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Executive Summary

Scientists’ use of flawed statistics and editors’ complaisant practices both contrib-

ute to the mass production and publication of irreproducible research in a wide 

range of scientific disciplines. Far too many researchers use unsound scientific 

practices. This crisis poses serious questions for policymakers. How many federal reg-

ulations reflect irreproducible, flawed, and unsound research? How many grant dollars 

have funded irreproducible research? How widespread are research integrity violations? 

Most importantly, how many government regulations based on irreproducible science 

harm the common good?

The National Association of Scholars’ (NAS) project Shifting Sands: Unsound Science 

and Unsafe Regulation examines how irreproducible science negatively affects select ar-

eas of government policy and regulation governed by different federal agencies. We also 

seek to demonstrate procedures which can detect irreproducible research. This second 

policy paper in the Shifting Sands project focuses on irreproducible research in the field of 

nutritional epidemiology, which informs much of the U.S. Food and Drug Administration’s 

(FDA) nutrition policy. 

The scientific (academic) world’s professional incentives reward exciting research 

with new positive (statistically significant) claims—but not reproducible research. This 

encourages researchers, wittingly or negligently, to use different flawed statistical prac-

tices to produce positive, but likely false, claims. Our report applies Multiple Testing and 

Multiple Modeling (MTMM) to assess whether a body of research indeed has been affect-

ed by such flawed practices.

MTMM controls for experiment-wise error—the probability that at least one indi-

vidual claim will register a false positive when multiple statistical tests are conducted. 

Conducting large numbers of statistical tests in a study produces many false positives by 

chance alone. We counted the number of statistical tests and used a novel statistical tech-

nique—p-value plotting—as a severe test to diagnose specific claims made about relation-

ships between i) consumption of red and processed meats and health outcomes such as 

mortality, cancers, and diabetes; and ii) soy protein and lipid (cholesterol) markers as 

surrogates for cardiovascular disease risk reduction.
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We found persuasive circumstantial evidence that the scientific literature (in gen-

eral) and statistical practices (specifically) affecting the nutritional epidemiology of red 

and processed meats and negative health outcomes, and soy protein and cardiovascular 

disease risk reduction, are untrustworthy. All of these flawed statistical practices center 

around the use of the semi-quantitative Food Frequency Questionnaire (FFQ) – a self-ad-

ministered dietary assessment instrument. FDA nutritional policies on red and processed 

meats and soy protein might have been very different had they applied more rigorous sci-

entific reproducibility requirements to research that they used to justify their policies.

We offer 12 recommendations that are intended to bring FDA methodologies up to the 

level of best available science, as per the mandate of The Information Quality Act (sometimes 

called The Data Quality Act):

•	 Adopt resampling methods (Multiple Testing and Multiple Modeling) as part 

of the standard battery of tests applied to nutritional epidemiology research.

•	 Take greater account of difficulties associated with subgroup analysis in 

nutritional research – which increases the possibility of producing false posi-

tive relationships.

•	 Require all studies that do not correct for MTMM to be labeled “exploratory.”

•	 Rely exclusively on meta-analyses that use tests to take account of endemic 

HARKing, p-hacking, and other questionable research procedures.

•	 For all research that informs FDA approval of nutritional health claims:

	– require the FDA in its assessments of scientific studies to take account 

of endemic HARKing, p-hacking and other questionable research proce-

dures, e.g. require p-value plot analysis for all FFQ meta-analysis studies 

used to inform regulations;

	– require preregistration and registered reports for observational studies as 

well as for randomized clinical trials;

	– require public access to all relevant data sets;

	– place greater weight on reproducible research;

	– consider more far-reaching reforms, such as funding data set building 

and data set analysis separately; and

	– take account of the irreproducibility crisis in the use of the “weight of 

evidence” standard to assess both base studies and meta-analyses.

•	 Do not fund or rely on research of other organizations such as the World 

Health Organization (WHO) until these organizations adopt sound statistical 

practices.

•	 Establish systematic procedures to inhibit research integrity violations.
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We have subjected the science underpinning nutritional health claims in relation to 

red and processed meat and soy protein to serious scrutiny. We believe the FDA should 

take account of our methods as it considers food health claims. Yet we care even more 

about reforming the procedures the FDA uses in general to assess nutritional science.

The government should use the very best science—whatever the regulatory conse-

quences. Scientists should use the very best research procedures—whatever result they 

find. Those principles are the twin keynotes of this report. The very best science and re-

search procedures involve building evidence on the solid rock of transparent, reproduc-

ible, and actual reproduced scientific inquiry, not on shifting sands.
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An irreproducibility crisis afflicts a wide range of scientific and social-scientific dis-

ciplines, from epidemiology to social psychology. Improper research techniques, 

a lack of accountability, disciplinary and political groupthink, and a scientific 

culture biased toward producing positive results contribute to this plight. Other factors 

include inadequate or compromised peer review, secrecy, conflicts of interest, ideologi-

cal commitments, and outright dishonesty.

Science has always had a layer of untrustworthy results published in respectable 

places and “experts” who were eventually shown to have been sloppy, mistaken, or un-

truthful in their reported findings. Irreproducibility itself is nothing new. Science ad-

vances, in part, by learning how to discard false hypotheses, which sometimes means 

dismissing reported data that does not stand the test of independent reproduction.

But the irreproducibility crisis is something new. The magnitude of false (or simply 

irreproducible) results reported as authoritative in journals of record appears to have 

dramatically increased. “Appears” is a word of caution, since we do not know with any 

precision how much unreliable reporting occurred in the sciences in previous eras. 

Today, given the vast scale of modern science, even if the percentage of unreliable reports 

has remained fairly constant over the decades, the sheer number of irreproducible stud-

ies has grown vastly. Moreover, the contemporary practice of science, which depends on 

a regular flow of large governmental expenditures, means that the public is, in effect, 

buying a product rife with defects. On top of this, the regulatory state frequently builds 

both its cases for regulation and the substance of its regulations on the basis of unproven, 

unreliable, and sometimes false scientific claims.
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In short, many supposedly scientific results cannot be reproduced reliably in sub-

sequent investigations and offer no trustworthy insight into the way the world works. A 

majority of modern research findings in many disciplines may well be wrong.

That was how the National Association of Scholars summarized matters in our report 

The Irreproducibility Crisis of Modern Science: Causes, Consequences, and the Road to Reform 

(2018).1 Since then we have continued our work to press for reproducibility reform by sev-

eral different avenues. In February 2020, we co-sponsored with the Independent Institute 

an interdisciplinary conference on Fixing Science: Practical Solutions for the Irreproducibility 

Crisis, to publicize the irreproducibility crisis, exchange information across disciplinary 

lines, and canvass (as the title of the conference suggests) practical solutions for the ir-

reproducibility crisis.2 We have also provided a series of public comments in support of 

the Environmental Protection Agency’s rule Strengthening Transparency in Pivotal Science 

Underlying Significant Regulatory Actions and Influential Scientific Information.3 We have 

publicized different aspects of the irreproducibility crisis by way of podcasts and short 

articles.4

And we have begun work on our Shifting Sands project. In May 2021 we published 

Shifting Sands: Report I Keeping Count of Government Science: P-Value Plotting, P-Hacking, and 

PM2.5 Regulation.5 This report, Flimsy Food Findings: Food Frequency Questionnaires, False 

Positives, and Fallacious Procedures in Nutritional Epidemiology, is the second of four that 

will appear as part of Shifting Sands, each of which will address the role of the irreproduc-

ibility crisis in different areas of federal regulatory policy. In these reports we address a 

central question that arose after we published The Irreproducibility Crisis.

You’ve shown that a great deal of science hasn’t been reproduced properly and 

may well be irreproducible. How much government regulation is actually built on 

1	 David Randall and Christopher Welser, The Irreproducibility Crisis of Modern Science: Causes, Consequences, and 
the Road to Reform (National Association of Scholars, 2018), https://www.nas.org/reports/the-irreproducibility-cri-
sis-of-modern-science.

2	 Fixing Science: Practical Solutions for the Irreproducibility Crisis, YouTube, https://www.youtube.com/
watch?v=eee6KloEUR4&list=PL-mariB2b6NugvvjAFeAjK-_-Y6wXCkvM; “Conference Follow-up: Fixing Science,” Na-
tional Association of Scholars, February 19, 2020, https://www.nas.org/blogs/article/conference-follow-up-fixing-sci-
ence.

3	 “UPDATED: NAS Public Comment on Strengthening Transparency in Regulatory Science,” National Association of 
Scholars, June 19, 2018, https://www.nas.org/blogs/article/updated_nas_public_comment_on_strengthening_trans-
parency_in_regulatory_scie; Peter Wood, “NAS Comments on EPA’s Proposed Supplemental Notice of Proposed 
Rulemaking,” March 23, 2020, https://www.nas.org/blogs/article/nas-comment-on-epas-proposed-supplemental-no-
tice-of-proposed-rulemaking; “Comments on EPA’s Final Rule, ‘Strengthening Transparency’,” National Association of 
Scholars, January 12, 2021, https://www.nas.org/blogs/article/nas-comments-on-epas-final-rule-strengthening-trans-
parency.

4	 “Episode #51: Rabble Rousing with Lee Jussim,” https://www.nas.org/blogs/media/episode-51-rabble-rousing-with-
lee-jussim; “Legally Wrong: When Courts and Science Meet with Nathan Schachtman,” https://www.nas.org/blogs/
media/legally-wrong-when-politics-and-science-meet-with-nathan-schactman; David Randall, “Bad Science Makes 
for Bad Government,” National Association of Scholars, September 19, 2019, https://www.nas.org/blogs/article/bad-
science-makes-for-bad-government; Edward Reid, “Irreproducibility and Climate Science,” National Association of 
Scholars, May 17, 2018, https://www.nas.org/blogs/article/irreproducibility_and_climate_science.

5	 David Randall, Warren Kindzierski, and Stanley Young, Shifting Sands: Report I Keeping Count of Government Science: 
P-Value Plotting, P-Hacking, and PM2.5 Regulation (National Association of Scholars, 2021), https://www.nas.org/re-
ports/shifting-sands-report-i.

https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science
https://www.nas.org/reports/the-irreproducibility-crisis-of-modern-science
https://www.youtube.com/watch?v=eee6KloEUR4&list=PL-mariB2b6NugvvjAFeAjK-_-Y6wXCkvM
https://www.youtube.com/watch?v=eee6KloEUR4&list=PL-mariB2b6NugvvjAFeAjK-_-Y6wXCkvM
https://www.nas.org/blogs/article/conference-follow-up-fixing-science
https://www.nas.org/blogs/article/conference-follow-up-fixing-science
https://www.nas.org/blogs/article/updated_nas_public_comment_on_strengthening_transparency_in_regulatory_scie
https://www.nas.org/blogs/article/updated_nas_public_comment_on_strengthening_transparency_in_regulatory_scie
https://www.nas.org/blogs/article/nas-comment-on-epas-proposed-supplemental-notice-of-proposed-rulemaking
https://www.nas.org/blogs/article/nas-comment-on-epas-proposed-supplemental-notice-of-proposed-rulemaking
https://www.nas.org/blogs/article/nas-comments-on-epas-final-rule-strengthening-transparency
https://www.nas.org/blogs/article/nas-comments-on-epas-final-rule-strengthening-transparency
https://www.nas.org/blogs/media/episode-51-rabble-rousing-with-lee-jussim
https://www.nas.org/blogs/media/episode-51-rabble-rousing-with-lee-jussim
https://www.nas.org/blogs/media/legally-wrong-when-politics-and-science-meet-with-nathan-schactman
https://www.nas.org/blogs/media/legally-wrong-when-politics-and-science-meet-with-nathan-schactman
https://www.nas.org/blogs/article/bad-science-makes-for-bad-government
https://www.nas.org/blogs/article/bad-science-makes-for-bad-government
https://www.nas.org/blogs/article/irreproducibility_and_climate_science
https://www.nas.org/reports/shifting-sands-report-i
https://www.nas.org/reports/shifting-sands-report-i
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irreproducible science? What has been the actual effect on government policy of ir-

reproducible science? How much money has been wasted to comply with regulations 

that were founded on science that turned out to be junk?

This is the $64 trillion dollar question. It is not easy to answer. Because the irre-

producibility crisis has so many components, each of which could affect the research 

that is used to inform regulatory policy, we are faced with a maze of possible sources of 

misdirection.

The authors of Shifting Sands include these just to begin with:

•	 malleable research plans;

•	 legally inaccessible data sets;

•	 opaque methodology and algorithms;

•	 undocumented data cleansing;

•	 inadequate or non-existent data archiving;

•	 flawed statistical methods, including p-hacking;

•	 publication bias that hides negative results; and

•	 political or disciplinary groupthink.

Each of these could have far-reaching effects on government regulatory policy—and 

for each of these, the critique, if well-argued, would most likely prove that a given piece of 

research had not been reproduced properly—not that it actually had failed to reproduce. 

(Studies can be made to “reproduce,” even if they don’t really.) To answer the question 

thoroughly, one would need to reproduce, multiple times, to modern reproducibility stan-

dards, every piece of research that informs governmental regulatory policy.

This should be done. But it is not within our means to do so.

What the authors of Shifting Sands did instead was to reframe the question more 

narrowly. Governmental regulation is meant to clear a high barrier of proof. Regulations 

should be based on a very large body of scientific research, the combined evidence of 

which provides sufficient certainty to justify reducing Americans’ liberty with a govern-

ment regulation. What is at issue is not any particular piece of scientific research, but 

rather whether the entire body of research provides so great a degree of certainty as to 

justify regulation. If the government issues a regulation based on a body of research that has 

been affected by the irreproducibility crisis so as to create the false impression of collective cer-

tainty (or extremely high probability), then, yes, the irreproducibility crisis has affected govern-

ment policy by providing a spurious level of certainty to a body of research that justifies a govern-

ment regulation.

The justifiers of regulations based on flimsy or inadequate research often cite a 

version of what is known as the “precautionary principle.” This means that, rather than 
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basing a regulation on science that has withstood rigorous tests of reproducibility, they 

base the regulation on the possibility that a scientific claim is accurate. They do this with 

the logic that it is too dangerous to wait for the actual validation of a hypothesis, and that 

a lower standard of reliability is necessary when dealing with matters that might involve 

severely adverse outcomes if no action is taken.

This report does not deal with the precautionary principle, since it summons a con-

clusiveness that lies beyond the realm of actual science. We note, however, that invoca-

tion of the precautionary principle is not only non-scientific, but is also an inducement to 

accepting meretricious scientific practice and even fraud.

The authors of Shifting Sands addressed the more narrowly framed question posed 

above. They applied a straightforward statistical test, Multiple Testing and Multiple 

Modeling (MTMM), and applied it to a body of meta-analyses used to justify government 

research. MTMM provides a simple way to assess whether any body of research has 

been affected by publication bias, p-hacking, and/or HARKing (Hypothesizing After the 

Results were Known)—central components of the irreproducibility crisis. In this second 

report, the authors applied this MTMM method to portions of the research underlying 

the Food and Drug Agency’s (FDA) labeling requirements for health claims that charac-

terize the relationship between a substance (e.g., a food or food component) and a health 

benefit, a disease (e.g., cancer or cardiovascular disease), or a health condition (e.g., high 

blood pressure). The scientific literature (in general) and statistical practices (specifi-

cally) of nutritional epidemiology of red and processed meats and negative health out-

comes and soy protein and cardiovascular disease risk reduction are untrustworthy. All 

of these flawed statistical practices center around the use of the semi-quantitative Food 

Frequency Questionnaire (FFQ) – a self-administered dietary assessment instrument. 

U.S. FDA nutrition policies on red and processed meats and soy protein might have been very dif-

ferent had they applied more rigorous scientific reproducibility requirements to research that they 

used to justify their policies.

That’s the headline conclusion. But it leads to further questions. Why didn’t the FDA 

use this statistical technique long ago? How exactly does regulatory policy assess sci-

entific research? What precise policy reforms does this research conclusion therefore 

suggest?

The broadest answer to why the FDA hasn’t adopted this statistical technique for as-

sessing health claims is that the entire discipline of nutritional epidemiology depends upon 

a series of assumptions and procedures, many of which give pause to professionals in dif-

ferent fields—and which should give pause to the layman as well.

•	 Nutritional epidemiology relies predominantly on observational data and 

associations, which researchers generally judge to be less reliable than 
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experimental data and interventions. FDA Guidance Documents acknowledge 

the shortcomings of food consumption surveys, including FFQs, and usually 

note that observational studies are less reliable than intervention studies—

but still allow FFQs to inform FDA regulation.

•	 Nutritional epidemiology particularly relies on Food Frequency 

Questionnaires (FFQs), which have become the most common method by 

which scientists measure dietary intake in large observational study popula-

tions. Scholars have noted for decades that an FFQ is an unreliable source of 

data, since it relies on subjects’ ability both to remember accurately what they 

have consumed and to report with equal accuracy. FFQ association studies 

also frequently gloss over the complexities of digestion. Individuals consume 

thousands of chemicals in millions of possible daily combinations and it 

therefore is challenging, if not impossible, to disentangle the association of a 

single dietary (food) component with a single disease.

•	 FFQs possess data for dozens or hundreds of substances and health outcomes, 

and therefore are extremely susceptible to multiple testing and the manufac-

ture of false positive results. FFQs, unless corrected for Multiple Testing and 

Multiple Modeling (MTMM), are virtually guaranteed to produce a spurious 

correlation between some food and some disease. Researchers can use multi-

ple testing and multiple modelling until they find an exciting result to submit 

to the editors and referees of a professional journal.

•	 At the most fundamental statistical level, nutritional epidemiology has not 

taken into account the recent challenges posed to the very concept of statisti-

cal significance, or the procedures of probability of causation.6 The Shifting Sands 

authors confined their critique to much narrower grounds, but readers should 

be aware that the statistical foundations underlying nutritional epidemiology 

are by no means secure.

•	 Most relevantly for Shifting Sands, nutritional epidemiology as a discipline 

has rejected the need to adjust results for multiple comparisons. The entire 

discipline of nutritional epidemiology uses procedures that are guaranteed to 

produce false positives and rejects using well-established corrective proce-

dures. MTMM tests have been available for decades. Genetic epidemiologists 

adopted them long ago. Nutritional epidemiology rejects MTMM tests as a 

discipline—and because it does, the FDA can say it is simply following profes-

sional judgment.

6	  W. M. Briggs, “Everything wrong with p-values under one roof,” in Beyond Traditional Probabilistic Methods in 
Economics, ECONVN 2019, Studies in Computational Intelligence, Volume 809, eds. Kreinovich V., Thach N., Trung N., 
Van Thanh D. (Cham, Switzerland: Springer, 2019), https://doi.org/10.1007/978-3-030-04200-4_2; Louis Anthony Cox, 
Jr., et al., Causal Analytics for Applied Risk Analysis (Cham, Switzerland: Springer, 2018).

https://doi.org/10.1007/978-3-030-04200-4_2
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These are serious flaws—and I don’t mean by highlighting them to suggest that nu-

tritional epidemiologists haven’t done serious and successful work to keep themselves on 

the statistical straight-and-narrow. The discipline does a great deal correctly, for which 

it should be commended. But the discipline isn’t perfect. It possesses blind-spots that 

amount to disciplinary groupthink. Americans must not simply defer to nutritional epi-

demiology’s “professional consensus.”

Yet that is what the FDA does—and, indeed, the federal government as a whole. The 

intention here was sensible—that government should seek to base its views on disinter-

ested experts as the best way to provide authoritative information on which it should act. 

Yet there are several deep-rooted flaws in this system, which have become increasingly 

apparent in the decades since the government first developed an extensive scientific-reg-

ulatory complex.

•	 Government regulations do not account for disciplinary group-think.

•	 Government regulations do not account for the possibility that a group 

of scientists and governmental regulators, working unconsciously or 

consciously, might act to skew the consideration of which scientific studies 

should be used to inform regulation.

•	 Government regulations define “best available science” by the “weight of 

evidence” standard. This is an arbitrary standard, subject to conscious or 

unconscious manipulation by government regulators. It facilitates the effects 

of groupthink and the skewed consideration of evidence.

•	 Governmental regulations have failed to address fully the challenge of the 

irreproducibility crisis, which requires a much higher standard of transpar-

ency and rigor than was previously considered “best acceptable science.”

•	 The entire framework of seeking out disinterested expertise fails to take into 

account the inevitable effects of using scientific research to justify regulations 

that affect policy, have real-world effect, and become the subject of political 

debate and action. The political consequences have unavoidably had the effect 

of tempting political activists to skew both scientific research and the govern-

mental means of weighing scientific research. Put another way, any formal 

system of assessment inevitably invites attempts to game it.

•	 To all this we may add the distorting effects of massive government funding of 

scientific research. The United States federal government is the largest single 

funder of scientific research in the world; its expectations affect not only the 

research it directly funds but also all research done in hopes of receiving 

federal funding. Government experts therefore have it in their power to create 

a skewed body of research, which they can then use to justify regulation.



19Preface and Acknowledgments

Shifting Sands casts a critical eye on the procedures of the field of nutritional epide-

miology, but it also casts a critical eye on governmental regulatory procedure, which has 

provided no check to the flaws of the nutritional epidemiology discipline, and which is 

susceptible to great abuse. Shifting Sands is doing work that nutritional epidemiologists 

and governmental regulators should have done decades ago. Their failure to do so is in 

itself substantial evidence of the need for widespread reform, both among nutritional ep-

idemiologists and among governmental regulators.

Before I go further, I should make clear the stakes of the “skew” in science that feeds 

regulation.

A vast amount of government regulation is based on scientific research affected by 

the irreproducibility crisis. This research includes such salient topics as racial disparity, 

implicit bias, climate change, and pollution regulation—and every aspect of science and 

social science that uses statistics. Climate change is the most fiercely debated subject, 

but the EPA’s pollution regulations are a close second—not least because American busi-

nesses must pay extraordinary amounts of money to comply with them. A 2020 report 

prepared for the Natural Resource Defense Council estimates that American air pollu-

tion regulations cost $120 billion per year—and we may take the estimate provided to an 

environmental advocacy group to be the lowest plausible number.7 The economic conse-

quences carry with them correspondingly weighty political corollaries: the EPA’s pollu-

tion regulations constitute a large proportion of the total power available to the federal 

government. The economic and political consequences of the EPA’s regulations are why 

we devoted our first Shifting Sands report to PM2.5 regulation.

The consequences of FDA regulation are at least as consequential, for they affect the 

food and drink consumed by every American. So therefore are the consequences of FDA 

mis-regulation. Inaccurate labels can mislead consumers, not least by encouraging them 

to adopt fad diets that present health risks. Furthermore, every company in the food sec-

tor, which involved $6.22 trillion dollars in annual sales in 2020, depends for its livelihood 

on accurate labeling of food products. Mislabeling health benefits can give a company a 

larger market share than it deserves.

To take a more concrete example, the Code of Federal Regulations declares that “The 

scientific evidence establishes that diets high in saturated fat and cholesterol are associ-

ated with increased levels of blood total- and LDL-cholesterol and, thus, with increased 

risk of coronary heart disease,” and allows companies to make corollary health claims 

about reducing the risk of heart disease.8 The FDA duly notes on its Interactive Nutrition 

Facts Label that “Diets higher in saturated fat are associated with an increased risk of 

7	 Jason Price, et al., The Benefits and Costs of U.S. Air Pollution Regulations (Industrial Economics, Incorporated, 2020), 
https://www.nrdc.org/sites/default/files/iec-benefits-costs-us-air-pollution-regulations-report.pdf.

8	 CFR - Code of Federal Regulations Title 21. Revised as of April 21, 2020. https://www.accessdata.fda.gov/scripts/cdrh/
cfdocs/cfcfr/cfrsearch.cfm?fr=101.75.

https://www.nrdc.org/sites/default/files/iec-benefits-costs-us-air-pollution-regulations-report.pdf
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.75
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=101.75
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developing cardiovascular disease.”9 Yet recent research concludes that “Numerous me-

ta-analyses and systematic reviews of both the historical and current literature reveals 

that the saturated-fat diet-heart hypothesis was not, and still is not, supported by the ev-

idence. There appears to be no consistent benefit to all-cause or CVD mortality from the 

reduction of dietary saturated fat.”10 The law rather than the FDA’s approach to statistics 

was at issue here, but the financial consequences have been enormous: consumers have 

redirected billions of dollars toward producers of foods with less saturated fats, for a diet 

that has no discernible health benefit.

Shifting Sands reinforces the case for policy reforms that would strengthen the FDA’s 

procedures to assess nutritional epidemiology research results. The authors and I believe 

that this is the logical corollary of the current state of statistically informed science. I 

trust that we would favor the rigorous use of MTMM tests no matter what policy result 

they indicated, and I will endeavor to make good on that principle if MTMM tests emerge 

that argue against my preferred policies. Those are the policy stakes of Shifting Sands. I 

hope that its scientific claims will be judged without reference to its likely policy conse-

quences. The possible policy consequences have not pre-determined the report’s findings. 

We claim those findings are true, regardless of the consequences, and we invite others to 

reproduce our work.

This report puts into layman’s language the results of several technical studies 

by members of the Shifting Studies team of researchers, S. Stanley Young and Warren 

Kindzierski. Some of these studies have been accepted by peer-reviewed journals; others 

have been submitted and are under review. As part of NAS’s own institutional commit-

ment to reproducibility, Young and Kindzierski pre-registered the methods of their tech-

nical studies. And, of course, NAS’s support for these researchers explicitly guaranteed 

their scholarly autonomy and the expectation that these scholars would publish freely, 

according to the demands of data, scientific rigor, and conscience.

This report is the second of four scheduled reports, each critiquing different aspects 

of the scientific foundations of federal regulatory policy. We intend to publish these re-

ports separately and then as one long report, which will eliminate some necessary du-

plication in the material of each individual report. The NAS intends these four reports 

collectively to provide a substantive, wide-ranging answer to the question What has been 

the actual effect on government policy of irreproducible science?

I am deeply grateful for the support of many individuals who made Shifting Sands 

possible. The Arthur N. Rupe Foundation provided Shifting Sands’ funding—and, within 

the Rupe Foundation, Mark Henrie’s support and goodwill got this project off the ground 

9	 Interactive Nutrition Facts Label, U.S. Food & Drug Administration, N.d., https://www.accessdata.fda.gov/scripts/
interactivenutritionfactslabel/saturated-fat.cfm

10	 V. M. Gershuni, “Saturated Fat: Part of a Healthy Diet,” Current Nutrition Reports 7, 3 (2018): 85–96. https://doi.
org/10.1007/s13668-018-0238-x.

https://www.accessdata.fda.gov/scripts/interactivenutritionfactslabel/saturated-fat.cfm
https://www.accessdata.fda.gov/scripts/interactivenutritionfactslabel/saturated-fat.cfm
https://doi.org/10.1007/s13668-018-0238-x
https://doi.org/10.1007/s13668-018-0238-x
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Introduction

How Food Regulations Get Made

The Food and Drug Administration (FDA) now requires that foods (except for meat 

from livestock, poultry and some egg products, which are regulated by the U.S. 

Department of Agriculture) be safe, wholesome, sanitary, and properly labeled.11 

The FDA’s labeling requirements include mention of health claims that characterize the 

relationship between a substance (e.g., a food or food component) and a health benefit, 

a disease (e.g., cancer or cardiovascular disease), or a health condition (e.g., high blood 

pressure).

The discipline of nutritional epidemiology plays a vital role in the FDA’s labeling re-

quirements. The FDA uses nutritional epidemiology to provide compelling scientific in-

formation to support its nutrition recommendations and more coercive regulations.12 

Nutritional epidemiology applies epidemiological methods to the study at the population 

level of the effect of diet on health and disease in humans. Nutritional epidemiologists 

base most of their inferences about the role of diet (i.e., foods and nutrients) in causing or 

preventing chronic diseases on observational studies.

From the 1980s onward, the increase of computing capabilities facilitated the appli-

cation of essentially retrospective self-administered dietary assessment instruments—

the semi-quantitative food frequency questionnaire (FFQ).13 FFQs, which are easy to use, 

place low burdens on participants, and allegedly capture long-term dietary intake, have 

become the most common method by which scientists measure dietary intake in large 

observational study populations.14

A longstanding criticism of using nutritional epidemiology to determine causality is 

that it relies predominantly on observational data and associations, which are general-

ly judged to be less reliable than experimental data and interventions.15 FDA Guidance 

Documents acknowledge the shortcomings of food consumption surveys, including FFQs, 

and usually note that observational studies are less reliable than intervention studies—

but still allow FFQs to inform FDA regulation.16

The FDA does not take sufficient account of nutritional epidemiology’s frail 

foundations.

11	  U.S. FDA (2021). We direct our analysis and our recommendations to the FDA, but we recognize the overlapping 
responsibilities of such federal departments and regulatory agencies as the United States Department of Agricul-
ture (USDA), and in particular its Food and Nutrition Service (FNS) and the Center for Nutrition Policy and Promotion 
(CNPP). There are other nutrition organizations within the Department of Health and Human Services, such as the Of-
fice of Nutrition Research in the National Institutes of Health, the Office of Disease Prevention and Health Promotion, 
and the Centers for Disease Control.

12	  Kavanaugh (2007).
13	  Boeing (2013).
14	  Boeing (2013); Satija (2015).
15	  Satija (2015).
16	  E.g., U.S. Food and Drug Administration Guidance Documents (2006); U.S. Food and Drug Administration Guidance 

Documents (2009).
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Nutritional Epidemiology’s Frail Foundations

Food Frequency Questionnaires

You are what you eat, the proverb goes. Certainly, some illnesses can proceed from diet, 

such as anemia.17 Most Americans have health problems at some point in their lives and 

they conclude frequently that poor diet has caused their poor health. They think so more 

than ever because of the invention and the spread of the Food Frequency Questionnaire 

(FFQ).

Walter Willett is Scientist Zero of the FFQ. He devised and publicized the FFQ in 

his “Reproducibility and validity of a semi-quantitative food frequency questionnaire” 

(1985); as of 2021 that article had been cited more than 4,000 times.18 A FFQ distributes a 

structured food list and a frequency response section to study participants, who indicate 

from memory their usual frequency of intake of each food and beverage over a set period 

of time, usually a day or a week.19 After some lapse of time, typically years, the subjects 

self-report on their health conditions. Willett, and all his followers, thus have data by 

which to propose an association between a particular food or diet and a particular health 

condition.

Scientists conduct statis-

tical comparisons to establish 

the association between FFQ 

dietary data items and health 

outcomes to produce multiple 

research papers. They then 

conduct further statistical 

analyses using meta-analyses of the individual research papers, which combine data from 

multiple published studies that address a common research question, such as the associa-

tion between a particular food and a particular disease.20 For example, one meta-analysis 

combines data of all published studies that examine the claim that high salt intake is as-

sociated with gastric cancer.21

17	  Lopez and Martos (2004).
18	  Willett (1985); GS (2021c).
19	  Satija (2015).
20	  Egger (2001).
21	  D’Elia (2012).

“Scholars have noted for decades that an 
FFQ is an unreliable source of data, since 
it relies on subjects’ ability both to remem-
ber accurately what they have consumed 
and to report with equal accuracy.”
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Scholars have noted for decades that an FFQ is an unreliable source of data, since it 

relies on subjects’ ability both to remember accurately what they have consumed and to 

report with equal accuracy.22

FFQ association studies also frequently gloss over the complexities of digestion. 

Individuals consume thousands of chemicals in millions of possible daily combinations 

and it therefore is challenging, if not impossible, to disentangle the association of a sin-

gle dietary (food) component with a single disease.23 To label a single food component a 

“cause” of disease in any case glosses over the fact that true biochemical interactions fre-

quently involve actual causative agents (i.e., chemicals or microbes in food), the interme-

diary products of digestion, and human disease.24 A proper analysis needs to disentangle 

ultimate causes and proximate causative agents—a task for which FFQs are ill equipped.

Researchers are aware of the unreliability of FFQs, and are working diligently to find 

alternative research tools,25 yet many scientists continue to engage in a cottage industry 

of FFQ research. FFQ studies, after all, are relatively inexpensive to conduct and relative-

ly sure to find a positive result. (We will explore below why FFQs find positive results so 

frequently.) Therefore, they are attractive to the great majority of researchers, who must 

both work on a budget and secure a steady stream of academic publications. FFQs’ known 

flaws have not prevented them from flourishing wildly. (See Figure 1.) 

Figure 1: FFQ Citations Since 198526

Years FFQ Citations

1981-85 777

1986-90 980

1991-95 1,650

1996-2000 2,400

2001-05 4,450

2006-10 8,650

2011-15 14,900

2016-20 15,400

2021 4,640

Total 53,847

22	  Archer (2015).
23	  Ioannidis (2018).
24	  Food components are generally tested individually. Several foods could contain a common potentially toxic chemical. 

The effect of the individual foods might not register statistically, so the effect of the chemical would go undetected—
oxalate and kidney stones is a likely example. See Curhan (1993).

25	  Béjar (2017); Williams (2020).
26	  GS (2021a).
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Since 2001, scholars have published about 2,300 FFQ studies annually.27 A 2021 Google 

Scholar search using “FFQ” and “meta-analysis” returned 22,800 citations.28 

And most cohort studies use FFQs.

Cohort Studies

Scientists have conducted cohort studies with increasing frequency since the 1950s. 

Cohort studies start with hundreds to thousands of people and follow them over an ex-

tended period of time—often 

many years.29 Researchers 

measure study participants’ 

initial attributes, including 

by means of an FFQ, and then 

collect health results over a succeeding period of time. Cohort studies often require sub-

stantial start-up costs, but it costs relatively little to examine more attributes of an al-

ready assembled group.

A cohort study can take on a life of its own. The Life Project in England, which exam-

ined children born within a small period of time, has become a generations-long cohort 

study about human development that has provided data for innumerable professional 

articles in a range of social science and health disciplines. Researchers have published 

2,500 papers on the 1958 cohort alone.30

Cohort studies make it easy for scientists to publish multiple papers using the same 

data set. But to engage in multiple testing creates a serious and scarcely acknowledged 

statistical problem, which affects the entire field of cohort studies.

Multiple Testing and the Manufacture of False Positive Results

Scientists who conduct cohort studies generally use a simple statistical analysis 

strategy on the data they collect—which causes or risk factors are associated with which 

outcomes (i.e., health conditions). This procedure allows researchers to analyze an ex-

traordinarily large number of possible relationships. 

If a data set contains “C” causes and “O” outcomes, then scientists can investigate C x 

O possible relationships. They can also examine how yes/no adjustment factors “A”, such 

as parental age, income, or education, can modify each of the C x O relationships. 

We can approximate the number of possible questions that one can examine in a co-

hort study with the following formula:

27	  GS (2021a).
28	  GS (2021b).
29	  Grimes (2002).
30	  Pearson (2016).

“Cohort studies make it easy for scientists 
to publish multiple papers using the same 
data set.”
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(C) x (O) x (2 raised to the power of A) = CO2A 

The number of possible questions at issue can increase extraordinarily rapidly in a 

cohort study. Consider this hypothetical cohort study of the relationship between a food 

substance and a disease or health-related condition: 

•	 The number of possible questions in a cohort study with survey data for 61 

foods from an FFQ,31 10 possible outcomes (diseases) of interest, and 5 yes/no 

adjustment factors (e.g., age, sex, marital status, ethnicity, education level) 

can be approximated as (61) x (10) x (25) = 19,520.

•	 The number of possible questions in a cohort study with survey data for 61 

foods from an FFQ, 20 possible outcomes (diseases) of interest, and 10 yes/no 

adjustment factors (e.g., age, sex, marital status, ethnicity, education level, 

body mass index, smoking status, total energy intake, physical activity level, 

sleep duration) can be approximated as (61) x (20) x (210) = 1,249,280.32

Researchers doing cohort studies who examine these C x O x 2A possible models can 

correct their work to take account of Multiple Testing and Multiple Modeling (MTMM).33 

(For a longer explanation of Multiple Testing Multiple Modeling, see Appendix 1.) If they 

do not, and mostly they don’t, they can produce large numbers of false positive results—

and quickly, given the spread through the scientific community of cheap, fast computer 

hardware and statistical software.34

Given that the conventional threshold for statistical significance (and hence of pro-

fessional publication) in most disciplines is a p-value of less than 0.05, a false positive re-

sult should occur 5% of the time by chance alone.35 (For a longer discussion of statistical 

significance, see Appendix 2.) In our first hypothetical example, we should expect 976 

false positive results (5% of 19,520). In our second hypothetical example, we should ex-

pect 62,464 false results (5% of 1,249,280).

Scientists generally are at least theoretically aware of this danger, albeit nutri-

tional epidemiologists have done far too little to correct their professional practices.36 

Schoenfeld and Ioannidis put it pungently:

In this survey of published literature regarding the relation between food 

ingredients and malignancy, we found that 80% of ingredients from random-

ly selected recipes had been studied in relation to malignancy and the large 

31	  Willett’s initial FFQ listed 61 foods. Willett (1985).
32	  Of course, a covariate can be used with multiple levels, which would expand the analysis search space.
33	  Westfall (1993).
34	  Pyne (2015).
35	  Young (2021a).
36	  Head (2015); Hubbard (2015); Aschwanden (2016); Ruxton (2016); Chamber (2017); Harris (2017).
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majority of these studies were interpreted by their authors as offering evi-

dence for increased or decreased risk of cancer. However, the vast majority 

of these claims were based on weak statistical evidence. Many statistical-

ly insignificant “negative” and weak results were relegated to the full text 

rather than to the study abstract. Individual studies reported larger effect 

sizes than did the meta-analyses. There was no standardized, consistent se-

lection of exposure contrasts for the reported risks. A minority of associa-

tions had more than weak support in meta-analyses, and summary effects 

in meta-analyses were consistent with a null average and relatively limited 

variance.37

Scientists also have warned their peers about the particular dangers of multiple test-

ing of cohort studies. Bolland and Grey commented in 2014 on research pertaining to the 

Nurses’ Health Study (NHS) that:

Investigators have published more than 1000 articles on the NHS, at a rate 

of more than 50 papers/year for the last 10 years. … To date, more than 2000 

hypotheses have been tested in these papers, and it seems likely that the 

number of statistical tests carried out would be in the tens of thousands. … 

Given the volume of hypotheses assessed and statistical tests undertaken, it 

seems likely that many results reported in NHS publications are false posi-

tives, and that the use of a threshold of P=0.05 for statistical significance is 

inappropriate without consideration of multiple statistical testing.

We suggest that authors of observational studies should report how many 

hypotheses have been tested previously in their cohort study, together with 

an estimate of the total number of statistical tests undertaken.38

Methods to adjust for MTMM have existed for decades. The Bonferroni method simply 

adjusts the p-value by multiplying the p-value by the number of tests. Westfall and Young 

provide a simulation-based method for correcting an analysis for MTMM.39 In practice, 

however, far too much “research” simply ignores the danger. 

Researchers can use multiple testing and multiple modeling until they find an ex-

citing result to submit to the editors and referees of a professional journal—in other 

words, they can p-hack.40 Editors and referees have an incentive to trust, with too much 

37	  Schoenfeld (2013).
38	  Bolland (2014).
39	  Westfall (1993); Benjamini (1995).
40	  Young (2021a).
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complacence, that researchers have done due statistical diligence, so they can publish 

exciting papers and have their journal recognized in the mass media.41 Some editors are 

part of the problem.42

FFQs and cohort studies, in other words, have been afflicted by the irreproducibility 

crisis of modern science.

The Irreproducibility Crisis of Modern Science

Nutritional epidemiology’s combination of sloppy statistics and complaisant editori-

al practices is a component of the larger irreproducibility crisis, which has led to the mass 

production and publication of irreproducible research.43 Many improper scientific prac-

tices contribute to the irreproducibility crisis, including poor applied statistical method-

ology, bias in data reporting, publication bias (the skew toward publishing exciting, pos-

itive results), fitting the hypotheses to the data, and endemic groupthink.44 Far too many 

scientists use improper scientific practices, including an unfortunate portion who com-

mit deliberate data falsification.45 The entire incentive structure of the modern complex 

of scientific research and regulation now promotes the mass production of irreproducible 

research.46 (For a longer discussion of the irreproducibility crisis, see Appendix 3.)

Many scientists themselves have lost overall confidence in the body of claims made in 

scientific literature.47 The ultimately arbitrary decision to declare p<0.05 as the standard 

of “statistical significance” has contributed extraordinarily to this crisis. Most cogently, 

Boos and Stefanski have shown that an initial result likely will not replicate at p<0.05 un-

less it possesses a p-value below 0.01, or even 0.001.48 Numerous other critiques about the 

p<0.05 problem have been published.49 Many scientists now advocate changing the defini-

tion of statistical significance to p<0.005.50 But even here, these authors assume only one 

statistical test and near perfect study methods.

Researchers themselves have become increasingly skeptical of the reliability of 

claims made in contemporary published research.51 A 2016 survey found that 90% of 

surveyed researchers believed that research was subject to either a major (52%) or a 

41	  NASEM (2019).
42	  Rothman (1990).
43	  Sarewitz (2012); Baker (2016).
44	  Randall (2018); Young (2021a).
45	  Al-Marzouki (2005); Couzin (2006); Redman (2013); Ritchie (2020).
46	  Buchanan (2004); Young (2021a).
47	  Sarewitz (2012); Baker (2016).
48	  Boos (2011).
49	  Clyde (2000); Gelman (2014); Hubbard (2015); Chamber (2017); Harris (2017); Briggs (2017, 2019).
50	  Johnson (2013); Benjamin (2018).
51	  NASEM (2016, 2019)
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minor (38%) crisis in reliability.52 Begley reported in Nature that 47 of 53 research results 

in experimental biology could not be replicated.53 A coalescing consensus of scientific 

professionals realizes that a large portion of “statistically significant” claims in scientific 

publications, perhaps even a majority in some disciplines, are false—and certainly should 

not be trusted until they are reproduced.54

Yet federal regulatory agencies are too credulous—including the FDA.

Reforming Government Regulatory 
Policy: The Shifting Sands Project

The National Association of Scholars’ (NAS) project Shifting Sands: Unsound Science 

and Unsafe Regulation examines how irreproducible science negatively affects select ar-

eas of government policy and regulation governed by different federal agencies.55 We also 

aim to demonstrate procedures which can detect irreproducible research. We believe 

government agencies should incorporate these procedures as they determine what con-

stitutes “best available science”—the standard that judges which research should inform 

government regulation.56

Shifting Sands aims to demonstrate that the irreproducibility crisis has affected so 

broad a range of government regulation and policy that government agencies should now 

engage in thoroughgoing modernization of the procedures by which they judge “best 

available science.” Agency regulations should address all aspects of irreproducible re-

search, including the inability to reproduce:

•	 the research processes of investigations;

•	 the results of investigations; and

•	 the interpretation of results.57

In Shifting Sands we use a single analysis strategy for all of our policy papers—p-value 

plotting (a visual form of Multiple Testing and Multiple Modeling analysis)—as a way to 

demonstrate weaknesses in different agencies’ use of meta-analyses. Our common ap-

proach supports a comparative analysis across different subject areas, while allowing for 

a focused examination of one dimension of the impact of the irreproducibility crisis on 

government agencies’ policies and regulations.

52	  Baker (2016).
53	  Begley (2012); and see Gerber (2008) [sociology]; Michaels (2008) [climate science]; Franco (2014) [social sciences]; 

Diener (2018) [psychology].
54	  Gelman (2014).
55	  Young (2021a).
56	  Kuhn (2016); IQA (2001).
57	  NASEM (2016).
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Our first Shifting Sands policy paper, Keeping Count of Government Science: P-Value 

Plotting, P-Hacking, and PM2.5 Regulation, focused on irreproducible research in the field of 

environmental epidemiology that informs the Environmental Protection Agency’s (EPA) 

policies and regulations.58

This second policy paper in the Shifting Sands project focuses on irreproducible re-

search in the field of nutritional epidemiology, which informs much of the U.S. Food and 

Drug Administration’s (FDA) nutrition policy. Our report builds upon the existing profes-

sional critique of nutritional epidemiology, which has concluded that the discipline does 

not impose rigorous controls upon its analytical procedures.59 A nutrition researcher can 

modify an analysis strategy after he has begun to examine data, examine multiple out-

comes, use multiple variables as predictors, and further adjust an analysis by deciding 

whether to include multiple covariates in his model. Nutrition research scarcely ever 

uses a preregistered, written protocol.60 The discipline consists largely of exploratory 

research—even though it uses methodologies that ought to be confined to confirmatory 

research.61

Flimsy Food Findings applies the methodology of p-value plotting and simple counting to 

critique: 

i.	 a meta-analysis of the relationship between red and processed meats 

and health outcomes such as mortality, cancers and diabetes;62 and 

ii.	 a meta-analysis of the relationship between soy protein intake and lipid 

markers (LDL cholesterol and other cholesterol markers) as surrogates 

for cardiovascular disease (CVD) risk reduction.63 

In addition to this section, which draws on two technical studies that have been sub-

mitted for professional publication,64 other sections in this report include:

1.	 background on the U.S. Food and Drug Administration;

2.	 methods;

3.	 results;

4.	 discussion (including research integrity violations);

5.	 our recommendations for policy changes; and

6.	 methodological appendices, drawn both from material presented in the first 

Shifting Sands report and from new research.

Our policy recommendations include both specific technical recommendations di-

rectly following from our technical analyses, and broader policy recommendations to 

58	  Young (2021a).
59	  Peace (2018).
60	  Ioannidis (2018); Gorman (2020).
61	  Gorman (2020).
62	  Vernooij (2019).
63	  Blanco Mejia (2018).
64	  Young (2021c); Young (2022).
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address the larger effects of the irreproducibility crisis on nutritional epidemiology, the 

scientific disciplines as a whole, and federal regulatory policy.

The FDA: Best Existing Practice in the Government?

Our analysis includes a case study of soy protein, currently under consideration by 

the FDA. The FDA’s initial determination is to remove the claim that soy protein provides 

a health benefit. Our research supports the FDA’s initial determination. We believe FDA 

procedures still need to be improved,65 but we note that our methodology in this case 

lends further support to a federal regulatory decision. We are glad that the evidence indi-

cates that in this case the FDA is headed toward a correct decision.

Until such time as government agencies radically change their procedures to address 

the irreproducibility crisis, they should at least adopt Best Existing Practices within the 

government. These may well be the FDA’s.

65	  Williams notes that the FDA requires rigorous evidence from manufacturers who wish to substantiate health claims, 
but allows far weaker evidence to substantiate its regulatory initiatives. Williams (2020).
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U.S. Food and Drug Administration (FDA)

History and Role of the U.S.  
Food and Drug Administration

The administrative origin of the United States Food and Drug Administration 

(FDA) traces back to 1862, when the Department of Agriculture instituted a 

new Bureau of Chemistry. Successive acts of legislation, including the Food and 

Drugs Act (1906), the Federal Food, Drug, and Cosmetic Act (1938), the Kefauver-Harris 

Drug Amendments (1962), the Nutrition Labeling and Education Act (1990), the Dietary 

Supplement Health and Education Act (1994), and the Food and Drug Administration 

Modernization Act (1997), have expanded its remit and modernized the regulatory 

tools at its disposal.66 The FDA now regulates about 78% percent of the food ingested by 

Americans.67

After World War II, and particularly in the aftermath of the Thalidomide scandal 

of the later 1950s and early 1960s, the FDA’s mandate to enforce drug safety prompted it 

to adopt rigorous requirements for study design, centered upon the gold standard of the 

randomized clinical trial, and equally rigorous requirements for statistical analyses of the 

data. It adopted these techniques to fulfil the somewhat vague legislative mandate to as-

sess “substantial evidence” by means of “adequate and well-controlled studies.” The FDA 

chose these techniques partly for their technical efficacy and partly because they would 

pass judicial muster when private manufacturers submitted legal challenges to the scien-

tific validity of FDA regulations.68

Since the 1960s, the FDA has reviewed its study design and statistical analysis stan-

dards regularly. In collaboration with private industry and academic researchers, it has 

updated them to match the evolving best practices of scientific research.69

The FDA, as indicated by its name, also has been concerned with food safety for more 

than a century. Its continuing remit to protect American public health includes ensuring 

safety of the food supply.70 Both the U.S. Federal Food, Drug and Cosmetic Act (1938) and the 

Food and Drug Administration 

Modernization Act (1997) au-

thorize the FDA to regulate 

66	  Milestones (2018). 
67	  Fact Sheet (2021). 
68	  Junod (2008).
69	  Junod (2008).
70	  U.S. FDA (2021). 

“The FDA now regulates about 78% of the 
food ingested by Americans.”
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health claims—any claim made on the label or in the labeling of a food that expressly 

or by implication characterizes the relationship of any substance to a disease or health 

condition.71 The FDA considers any statements on labels judged false or misleading by a 

significant scientific agreement among qualified experts to be “misbranding”.

The 1990s wave of legislation (the Nutrition Labeling and Education Act (1990), 

the Dietary Supplement Health and Education Act (1994), and the Food and Drug 

Administration Modernization Act (1997)) were intended to improve consumers’ health 

and well-being by providing them scientifically solid information about the foods they 

eat. They highlighted the salience of study design and statistical analysis, pioneered for 

drug regulation, and for the more broad and intensive food regulation required by these 

laws.

The FDA now requires that foods (except for meat from livestock, poultry and some 

egg products, which are regulated by the U.S. Department of Agriculture) be safe, whole-

some, sanitary, and properly labeled.72 The FDA’s labeling requirements include mention 

of health claims that characterize the relationship between a substance (e.g., a food or food 

component) and a health benefit, a disease (e.g., cancer or cardiovascular disease), or a 

health condition (e.g., high blood pressure).73

These health claims, whether for good or for ill, must survive an FDA assessment based 

on rigorous study design and valid statistical analysis. (So too must nutrient content 

claims and structure/function claims.) The FDA articulates its regulatory requirements 

by means of a lengthy catalog of highly detailed Guidance Documents.74

Some research suggests that even scientifically accurate labels can be misleading 

and have limited ability to improve consumer health.75 But the general frailties of the dis-

cipline of nutritional epidemiology mean that not all labels are accurate, or even relevant.

Nutritional Epidemiology

FDA regulatory requirements require that evidence to support a health claim should 

be based on studies in humans.76 The randomized controlled trial (RCT), especial-

ly the randomized, placebo-controlled, double-blind intervention study, provides the 

strongest evidence among studies in humans.77 The best RCT certainly trumps the best 

71	  Ellwood (2010); U.S. FDA (1997); U.S. FDA Centre for Food Safety and Applied Nutrition (2013).
72	  U.S. FDA (2021).
73	  Kavanaugh (2007).
74	  E.g., U.S. Food and Drug Administration Guidance Documents (2006); U.S. Food and Drug Administration Guidance 

Documents (2009).
75	  Hasler (2008).
76	  U.S. Food and Drug Administration Guidance Documents (2009).
77	  Schneeman (2007); We use RCTs in the remainder of this report to refer both to “randomized controlled trials” and to 

“randomized clinical trials”; both terms are common in the literature, and they are roughly equivalent.
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observational study—and one might argue that a very indifferent RCT is still superior to 

the best observational study.78 Yet not all intervention studies on food and food compo-

nents are RCTs, and frequently an RCT is unavailable and/or impractical. In these cases, 

the FDA must rely on lower-quality observational studies. It relies especially on cohort 

studies, dependent on dietary assessments based on FFQ analyses, and now pervasive in 

nutritional epidemiology.79 

The discipline of nutritional epidemiology plays a vital role in the FDA’s labeling re-

quirements. The FDA uses nutritional epidemiology to provide compelling scientific 

information to support its dietary recommendations and more coercive regulations.80 

Nutritional epidemiologists, other nutritional scientists, and food-policy analysts from 

the food industries, academia, and government, are all involved at some level in funding, 

approving, or conducting nutrition studies aimed at developing, supporting, and/or as-

sessing health claims.81

Nutritional epidemiology applies epidemiological methods to the study at the popu-

lation level of how diet affects health and disease in humans. Nutritional epidemiologists 

base most of their inferences about the role of diet (i.e., foods and nutrients) in causing 

or preventing chronic diseases on observational studies. Since the 1980s, food frequen-

cy questionnaires (FFQs), which are easy to use, place low burdens on participants, and 

aspire to capture long-term dietary intake, have become the most common method by 

which nutritional epidemiologists measure dietary intake in large observational study 

populations.82

Nutritional epidemiology suffers many weaknesses. Critics have long noted that nu-

tritional epidemiology relies predominantly on observational data, which researchers 

generally judge to be less reliable than experimental data, and that this generally weak-

ens its ability to establish causality.83 The discipline’s research findings are also afflicted 

by frequent alterations of study design, data acquisition methods, statistical analysis te-

chiques, and reporting of results.84 Selective reporting proliferates in published observa-

tional studies; researchers routinely test many questions and models during a study, and 

then only report results that are interesting (i.e., statistically significant).85 

78	  Barton (2000). RCTs do not as yet standardly account for the latest research, which is broadening our knowledge of 
the substantial individual and group variation in response to nutritional substances. Cecil and Barton (2020). While we 
do not address this particular weakness in RCTs in this report, scientists should also take account of it.

79	  Byers (1999b); Freudenheim (1999); Prentice (2010); Sempos (1999).
80	  Kavanaugh (2007).
81	  Byers (1999a).
82	  Boeing (2013); Satija (2015).
83	  Satija (2015). Causal criteria in nutritional epidemiology include consistency, strength of association, dose response, 

plausibility, and temporality. Potischman (1999).
84	  Boffetta (2008); NASEM (2016); NASEM (2019); Randall (2018); Sarewitz (2012).
85	  Gotzsche (2006).
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Additional problems that limit the ability of nutritional epidemiology to substantiate 

claims of causal associations include:

•	 causal associations are difficult to prove in so complex a process as dietary 

intake, which includes interactions and synergies across different dietary 

components;

•	 researcher flexibility allows estimates of food to be analyzed and presented in 

several ways—as individual food frequencies, food groups, nutrient indexes, 

and food-group-specific nutrient indexes;

•	 researcher flexibility also allows dietary assessments to be presented with 

or without various adjustment factors, including other correlated foods and 

nutrients;

•	 researcher flexibility allows scientists to choose among the many nutrient−

disease hypotheses that could be tested; and

•	 classic criteria for causation are often not met by nutritional epidemiologic 

studies, in large part because many dietary factors are weak and do not show 

linear dose-response relationships with disease risk within the range of expo-

sures commonly found in the population.86

FDA Guidance Documents 

acknowledge the shortcom-

ings of food consumption sur-

veys, including FFQs, and gen-

erally note that observational 

studies are less reliable than 

intervention studies—but still 

allow FFQs to inform FDA regulations.87And even published assessments of shortcomings 

in nutritional epidemiology procedures88 usually overlook the problems posed by multi-

ple analysis.

Lack of Proper Multiplicity Control

The FDA does acknowledge some dangers from multiplicity analysis, notably in its 

Multiple Endpoints in Clinical Trials Guidance for Industry.89 Yet nutritional epidemiolo-

gy suffers from the type of flawed statistical analysis that predictably and chronically 

86	  Byers (1999b).
87	  E.g., U.S. Food and Drug Administration Guidance Documents (2006); U.S. Food and Drug Administration Guidance 

Documents (2009).
88	  E.g., Liu (1994); Kristal (2005); Shim (2014).
89	  U.S. Food and Drug Administration Guidance Documents (2017).

“Nutritional epidemiology’s research 
findings are also afflicted by systematic 
alteration of study design, data acquisi-
tion, statistical analysis, and reporting of 
results.”
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inflates claims of statistical significance by failing to adjust for MTMM and by allowing 

researchers to search for results that are “statistically significant”. Scientists have made 

these points repeatedly in professional and popular venues.90

The FDA’s health claim reviews examine factors including whether studies are con-

trolled for bias and confounding variables, appropriateness of a study population, sound-

ness of the experimental design and analysis, use of appropriate statistical analysis, and 

estimates of intake.91 These “reviews” do not address the MTMM problem. Nor do they compare 

the given analysis to a protocol analysis.

Consequences

Inaccurate labels can mislead consumers, not least by encouraging them to adopt fad 

diets that present health risks.92 Furthermore, every company in the food sector, which 

involved $6.22 trillion dollars in annual sales in 2020,93 depends for its livelihood on ac-

curate labeling of food products. Mislabeling health benefits can give a company a larger 

market share than it deserves.

To take a more concrete example, the Code of Federal Regulations declares that “The 

scientific evidence establishes that diets high in saturated fat and cholesterol are associ-

ated with increased levels of blood total- and LDL-cholesterol and, thus, with increased 

risk of coronary heart disease,” and allows companies to make corollary health claims 

about reducing the risk of heart disease.94 The FDA duly notes on its Interactive Nutrition 

Facts Label that “Diets higher in saturated fat are associated with an increased risk of 

developing cardiovascular disease.”95 

Yet recent research concludes that “Numerous meta-analyses and systematic re-

views of both the historical and current literature reveals that the saturated-fat di-

et-heart hypothesis was not, and still is not, supported by the evidence. There appears 

to be no consistent benefit to all-cause or CVD mortality from the reduction of dietary 

saturated fat.”96 The law rather than the FDA’s approach to statistics was at issue here, 

but the financial consequences have been enormous: consumers have redirected billions 

of dollars toward producers of foods with less saturated fats, for a diet that may have no 

discernible health benefit.97

90	  See Byrnes (2001); Støvring (2007); Gotzsche (2006); Gullberg (2009); Kmietowicz (2014). For the Brian Wansink scan-
dal, see Hamblin (2018); Randall and Welser (2018).

91	  Schneeman (2007).
92	  D’Souza (2020); Marks (2011); Schutz (2021).
93	  Blázquez (2021).
94	  CFR (2020).
95	  INFL (n.d.).
96	  Gershuni (2018).
97	  And see Peretti (2013).
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Case Studies

Our report uses p-value plotting, a method that has the potential to aid the FDA in re-

viewing nutritional health claims. We now demonstrate how this method works by apply-

ing the methodology of p-value plotting to critique: 

i.	 a meta-analysis of the relationship between red and processed meats 

and health outcomes such as mortality, cancers and diabetes;98 and 

ii.	 a meta-analysis of the relationship between soy protein intake and lipid 

markers (LDL cholesterol and other cholesterol markers) as surrogates 

for cardiovascular disease (CVD) risk reduction.99 

The second case study analyzes a topic currently under review by the FDA. The FDA 

has permitted soy protein products to display a heart health label based on soy protein’s 

claimed ability to lower cholesterol. The FDA now is considering whether to revoke the 

claim, originally allowed in 1999, due to a perceived lack of consistent low-density lipo-

protein (LDL) cholesterol reduction in randomized controlled trials.100 

98	  Vernooij (2019).
99	  Blanco Mejia (2018).
100	 U.S. FDA (2017).
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Methods
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Methods

General Approach for Study Analysis

The general approach that we used in our technical studies parallels the work of 

scholars such as Peace et al.101 We investigated the statistical reliability of meth-

ods used in nutritional epidemiology meta-analyses that utilize FFQ studies on 

cohort populations. Meta-analysis is a systematic procedure for statistically combining 

data from multiple studies that address a common research question, such as whether a 

particular food has an association with a disease (e.g., cancer).102

Peace et al. (2018) evaluated 10 published studies (base study papers) included in a 

meta-analysis of the association between ingestion of sugar-sweetened beverages and the 

risk of metabolic syndrome and type 2 diabetes.103 Peace et al. observed that the number 

of foods ranged from 60 to 165 across the 10 base study papers, and that none of the base 

study papers corrected for multiple testing or multiple modeling (MTMM) to account for 

chance findings. 

The estimated number of statistical tests (or question asked on a same data set) can 

be referred to as “counts” or “analysis search space”.104 Counts/analysis search space for 

papers used in the Peace evaluation ranged from 3,072 to over 117 million.105 Again, we 

point out that five percent of questions asked in these studies works out to large num-

bers of signals of surprise (chance) findings! Peace et al. noted that paired with every 

p-value was an estimated effect. Any effect value from a base paper used in meta-analysis 

could well be a chance finding; the resulting meta-analytic statistic could equally well be 

biased.106 

Consider the following example. If students are arranged from tallest to shortest and 

their heights recorded in the same order, we have a set of order statistics. We now con-

sider more deeply the consequence of using order statistics such as a largest effect value 

(the largest order statistic), the expected values of order statistics, and their relation to 

p-values as a function of the number of observations in a sample (i.e., sample size). If we 

take a random sample from a population, and order the objects from smallest to largest, 

we denominate the reordered objects as “order statistics.” The value of the largest order 

statistic in the random sample is the largest number in the sample. The larger the sample 

101	 Peace (2018).
102	 Egger (2001).
103	 Peace (2018); Malik (2010).
104	 Young (2021a).
105	 Peace (2018).
106	 Peace (2018).
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size, N, taken from a population, the larger the deviation from the population mean the 

largest object’s expected value will be. (See Figure 2.) 

Figure 2: Expected value of largest order statistics and corresponding P-value for a 
sample size N from a normal distribution with a standard deviation of one107

N Expected deviation P-value

30 2.043 0.04952

60 2.319 0.02709

100 2.508 0.01720

200 2.746 0.00919

350 2.927 0.00551

400 2.968 0.00487

1000 3.241 0.00119

5000 3.678 0.00024

This table shows, for instance, that if 1,000 different objects are drawn from the 

target population, the largest order statistic, on average, will lie 3.241 standard devia-

tions away from the population mean, and will be extremely “significantly different” (p = 

.00119) from the population mean. A misinterpretation occurs in thinking that the largest 

order statistic can be used to represent an average of a group characteristic (i.e., the pop-

ulation mean). It does not.

Researchers who select “statistically significant” results from a multitude of possi-

bilities essentially use an order statistic from a study to make a research claim. Meta-

analysts in turn mistakenly take the order statistic to be a reliable number, which sub-

stantially affects the results of their meta-analysis. Unless allowance is made for the 

large sample space (i.e., MTMM corrections), misleading results are virtually certain 

to occur. We view meta-analysis computations as not robust. We believe our work is the 

first to highlight just how seriously a few p-hacked base studies can distort meta-analysis 

computations.108

We chose one meta-analysis of red meat and processed meat that used observational 

base studies109 and one meta-analysis of soy protein that used RCT base studies110 as rep-

resentative of nutritional epidemiologic work in this area. We also chose the soy protein 

107	N is the number of questions/models at issue; Expected deviation is expected deviation from zero for a normal 
distribution for the given sample size, N; p-value is the expected smallest p-value from N. Table values extracted from 
Peace (2018).

108	Cleophas (2015); Fisher (1950); Young (2021a); Young (2021b). Note that Young (2021b) includes a direct critique of the 
method of combining risk ratios promoted in DerSimonian (1986).

109	Vernooij (2019).
110	 Blanco Mejia (2018).
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study because the FDA is currently considering policy in this area. We believe that prob-

lems with these studies likely plague most nutritional meta-analysis studies.

P-value Plots

Epidemiologists traditionally use confidence intervals instead of p-values from a hy-

pothesis test to demonstrate or interpret statistical significance. Since researchers con-

struct both confidence intervals and p-values from the same data, the one can be calcu-

lated from the other.111 We first calculated p-values from confidence intervals for all data 

used by Vernooij et al. (red and processed meats) and by Blanco Mejia et al. (soy protein, 

FDA case study). 

We then developed p-value plots, a method for correcting Multiple Testing and 

Multiple Modeling (MTMM), to inspect the distribution of the set of p-values.112 (For a lon-

ger discussion of p-value plots, see Appendix 4.) The p-value is a random variable derived 

from a distribution of the test statistic used to analyze data and to test a null hypothe-

sis. In a well-designed study, the p-value is distributed uniformly over the interval 0 to 1 

regardless of sample size under the null hypothesis and the distribution of true null hy-

pothesis points in a p-value plot should form a straight line.113

A plot of p-values corresponding to a true null hypothesis, when sorted and plotted 

against their ranks, should conform to a near 45-degree line. Researchers can use the plot 

to assess the reliability of base study papers used in meta-analyses. (For a longer discus-

sion of meta-analyses, see Appendix 5.)

We constructed and interpreted p-value plots as follows:

•	 We computed and ordered p-values from smallest to largest and plotted them 

against the integers, 1, 2, 3, …

•	 If the points on the plot followed an approximate 45-degree line, we concluded 

that the p-values resulted from a random (chance) process, and that the data 

therefore supported the null hypothesis of no significant association.

•	 If the points on the plot followed approximately a line with a flat/shallow 

slope, where most of the p-values were small (less than 0.05), then the p-values 

provided evidence for a real (statistically significant) association.

•	 If the points on the plot exhibited a bilinear shape (divided into two lines), 

then the p-values used for meta-analysis are consistent with a two-component 

111	  Altman (2011a); Altman (2011b).
112	 Schweder (1982).
113	  Schweder (1982); Hung (1997); Bordewijk (2020).
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mixture and a general (over-all) claim is not supported; in addition, the 

p-value reported for the overall claim in the meta-analysis paper cannot be 

taken as valid.114

P-value plotting is not itself a cure-all. P-value plotting cannot detect every form of 

systematic error. P-hacking, research integrity violations, and publication bias will al-

ter a p-value plot. But it is a useful tool which allows us to detect a strong likelihood that 

questionable research procedures, such as HARKing and p-hacking, have corrupted base 

studies used in meta-analysis and therefore rendered the meta-analysis unreliable. We 

may also use it to plot “missing 

papers” in a body of research, 

and thus to infer that publica-

tion bias has affected a body of 

literature.

To HARK is to hypothesize 

after the results are known—to look at the data first and then come up with a hypothesis that 

has a statistically significant result.115 (For a longer discussion of HARKing, see Appendix 

6.)

P-hacking involves the relentless search for statistical significance and comes in 

many forms, including multiple testing and multiple modeling without appropriate sta-

tistical correction.116 It enables researchers to find nominally statistically significant re-

sults even when there is no real effect; to convert a fluke, false positive into a “statistically 

significant” result.117 

Irreproducible research hypotheses produced by HARKing and p-hacking send whole 

disciplines chasing down rabbit holes. It allows scientists to pretend their “follow-up” re-

search is confirmatory research; but in reality, their research produces nothing more than 

another highly tentative piece of exploratory research.118 In effect, bad techniques can lead 

to bad (irreproducible) claims.

P-value plotting is not the only means available by which to detect questionable 

research procedures. Scientists have come up with a broad variety of statistical tests 

to account for frailties in base studies as they compute meta-analyses. Unfortunately, 

questionable research procedures in base studies severely degrade the utility of the ex-

isting means of detection.119 We proffer p-value plotting not as the first means to detect 

HARKing and p-hacking in meta-analysis, but as a better means than alternatives which 

have proven ineffective.

114	 Schweder (1982). For p-value plot formation and other analysis details, see also Young (2018); Young (2019).
115	  Randall (2018); Ritchie (2020).
116	 Ellenberg (2014); Hubbard (2015); Chambers (2017); Harris (2017); Streiner (2018).
117	  Boffetta (2008); Ioannidis (2011); McLaughlin (2013); Simonsohn (2014).
118	 Young (2021a).
119	 Carter (2019).

“We may also use p-value plotting to plot 
“missing papers” in a body of research, 
and thus to infer that publication bias has 
affected a body of literature.”
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Counting

Initially, we want to give readers a general understanding of how commonly FFQ data 

are used by researchers investigating health outcomes in the literature. The problem, as 

we have partially explained previously, is that researchers using FFQs—which are typi-

cally used in cohort studies—can subject their data to MTMM120 and produce large num-

bers of false positive results. To understand how commonly FFQ data are used, we used 

a Google Scholar (GS) search of the literature to estimate the number of citations with 

the exact phrase “food frequency questionnaire” and a particular “health outcome” (ex-

plained below). 

We chose 18 health outcomes for this search component, including: obesity, inflam-

mation, depression, mental health, all-cause mortality, high blood pressure, lung and oth-

er cancers, metabolic disorders, low birth weight, pneumonia, autism, suicide, COPD (i.e., 

chronic obstructive pulmonary disease), ADHD (i.e., attention-deficit/hyperactivity dis-

order), miscarriage, atopic dermatitis, reproductive outcomes, and erectile dysfunction.

Secondly, it is important to get some sense of the number of research questions under 

consideration in any given cohort study. It is time-consuming and expensive to set up and 

follow a cohort. But it is relatively inexpensive to add new measurements and research 

questions to an existing cohort. For those reasons, it is typical to have many research 

questions under consideration with a given cohort study. Any single paper coming from 

a cohort study might appear only focused on one question. However, there are almost al-

ways many questions at issue: the same cohort can be used repeatedly for different re-

search purposes. When scientists produce many papers from the data of a single cohort 

study, and do not take explicit notice of their procedures and the necessary statistical 

corrections, it strongly suggests they have not corrected for MTMM.

We have focused on counting three categories that are central concerns of the 

Vernooij et al. and Blanco Mejia meta-analyses:

•	 Number of foods listed in food frequency questionnaires (FFQ) used in the 

base study papers. Very often a FFQ is part of a cohort study. People in the 

cohort are asked which foods they consumed, and often also asked the quan-

tity consumed. A FFQ usually lists more than 60 foods, sometimes hundreds. 

If there are many foods and many health outcomes of interest, we should 

expect many claims at issue and many resulting papers. So, if a particular 

paper reports only one outcome and one cause, we are likely only seeing a 

small fraction of the number of claims under consideration.

120	 Westfall (1993); Nissen (2016).
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•	 Number of questions considered in base study papers. For this, as we 

explained previously, we counted the causes (C), outcomes (O), and yes/no 

adjustment factors (A); where the number of questions = C × O × 2A.

•	 Number of published papers for each cohort study used in the base study 

papers. We used a Google Scholar search to estimate the number of papers 

that contain the data set used by the cohort study. We preferred to be conser-

vative in this estimate, so, for some data sets, we restricted the Google Scholar 

search to the paper’s title.

Figure 3: Google Scholar Search of Health Effects’ Association with Foods121

RowID Outcome # of citations

1 obesity 42,600

2 inflammation 23,100

3 depression 18,000

4 mental health 10,900

5 all-cause mortality 10,700

6 high blood pressure 9,470

7 lung and other cancers 7,180

8 metabolic disorders 5,480

9 low birth weight 4,630

10 pneumonia 2,140

11 autism 2,080

12 suicide 1,840

13 COPD 1,800

14 ADHD 1,370

15 miscarriage 1,240

16 atopic dermatitis 938

17 reproductive outcomes 537

18 erectile dysfunction 359

Figure 3 shows how frequently researchers use FFQ data to investigate 18 sepa-

rate health outcomes. Scientists appear particularly interested in investigating the 

121	Figure 3 presents results of 18 GS searches performed on 22 March 2021 with each separate search with the exact 
phrase “food frequency questionnaire” and one of the 18 “health outcomes” anywhere in the article. Note: a GS 
search is only an approximation as the literature changes rapidly and small changes in search specifications can 
change the results.
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association between obesity and particular foods, but they also investigate more unex-

pected topics, such as the association between particular foods and erectile dysfunction. 

They are, as a group, thorough in seeking out possible associations.
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Case Study #1: Red and Processed Meats

Introduction

The Johnston research group (Vernooij et al.) recently published a systematic re-

view and meta-analysis of cohort studies pertaining to food health claims of red 

and processed meat.122 We selected 6 of 30 health outcomes that they reported on 

for further investigation: all-cause mortality, cancer mortality and incidence, cardiovas-

cular mortality, nonfatal coronary heart disease, fatal and nonfatal myocardial infarc-

tion, and type 2 diabetes. We chose the 6 health outcomes studied most frequently in the 

base study papers.

Upon our request, the Johnston research group generously provided the data that we 

used for this report. We then used analysis search space counting123 and p-value plots124 to 

assess the claims about the health effects of red meat and processed meat.

Data Sets

The Johnston research group’s (Vernooij et al.) systematic review and meta-analysis 

reviewed 1,501 papers and selected 105 primary papers for further analysis. The data set 

included 70 study cohorts.125 The researchers used GRADE (Grading of Recommendations 

Assessment, Development and Evaluation) criteria126—which do not assess MTMM—to as-

sess the reliability of the papers drawn from published literature and to select papers 

for their meta-analysis. Their study complied with the recommendations of PRISMA 

(Preferred Reporting Items for Systematic reviews and Meta-Analyses).127 

Vernooij et al. stated that the base study papers used in their meta-analysis, which 

were observational studies, provided low- or very-low-certainty evidence according to 

the GRADE criteria. Vernooij et al. concluded that, “Low- or very-low-certainty evidence sug-

gests that dietary patterns with less red and processed meat intake may result in very small reduc-

tions in adverse cardiometabolic and cancer outcomes.”128 In other words, their meta-analysis 

ascribed little confidence to the claim that decreased consumption of red meat or pro-

cessed meat improves health.129

122	 Vernooij (2019).
123	 Peace (2018); Young (2019); Young (2021a).
124	 Schweder (1982).
125	 Vernooij (2019).
126	 Guyatt (2008).
127	 Moher (2009).
128	 Vernooij (2019).
129	 For professional responses to this and related studies, see Expert Reaction (2019).
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Results

Below we present results of our technical investigation about the association between 

red and processed meat with six health outcomes reported by Vernooij et al.130 We present 

a summary of the characteristics of the 15 base study papers we randomly selected from 

105 Vernooij et al. base study papers in Figure 4.

Counting

We randomly selected 15 of the 105 base study papers (14%) for counting purposes. 

A 5—20% sample from a population whose characteristics are known is considered ac-

ceptable for most research purposes as it provides an ability to make generalizations for 

the population.131 We accepted Vernooij et al.’s judgment that their screening procedures 

selected 105 base study papers with sufficiently consistent characteristics for use in 

meta-analysis.

Figure 4: Characteristics of 15 Randomly Selected Papers from Vernooij et al. 132

Cita-
tion#

Base Paper 
1st Author

Year Foods
Out-

comes

Causes 
(Predic-

tors)

Yes/no 
Adjustment 

Factors 
(Covari-

ates)

Tests Models
Search 
Space

8 Dixon 2004 51 3 51 17 153 131,072 20,054,016

31 McNaughton 2009 127 1 22 3 22 8 176

34 Panagiotakos 2009 156 3 15 11 45 2,048 92,160

38 Héroux 2010 18 32 18 9 576 512 294,912

47 Akbaraly 2013 127 5 4 5 20 32 640

48 Chan 2013 280 1 34 10 34 1,024 34,816

49 Chen 2013 39 4 12 5 48 32 1,536

53 Maruyama 2013 40 6 30 11 180 2,048 368,640

56 George 2014 122 3 20 13 60 8,192 491,520

57 Kumagai 2014 40 3 12 8 36 256 9,216

59 Pastorino 2016 45 1 10 6 10 64 640

65 Lacoppidan 2015 192 1 6 16 6 65,536 393,216

130	Vernooij (2019).
131	Creswell (2013).
132	Vernooij (2019). Citation# is Vernooij et al. reference number, Author name is first author listed for reference; Year = 

publication year; Foods = # of foods used in Food Frequency Questionnaire; Tests = Outcomes × Predictors; Models = 
2k where k = number of Covariates; Search Space = approximation of analysis search space = Tests × Models.
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80 Lv 2017 12 3 27 8 81 256 20,736

92
Chang-
Claude

2005 14 5 3 7 15 128 1,920

99 Tonstad 2013 130 1 4 10 4 1,024 4,096

We note that while Willett’s early food frequency questionnaire (FFQ) studies inves-

tigated only 61 foods,133 these 15 base studies include FFQ−cohort studies examining as 

many as 280 foods134 and 32 different health outcomes.135

We present summary statistics of the 15 base study papers we randomly selected 

from 105 Vernooij et al. base study papers in Figure 5.

Figure 5: Summary statistics of 15 randomly selected papers from Vernooij et al. 136

Statistic Foods Outcomes
Causes (Pre-

dictors)

Yes/no Adjust-
ment Factors 
(Covariates)

Tests Models Search Space

minimum 12 1 3 3 4 8 176

lower quartile 40 1 8 7 18 96 1,728

median 51 3 15 9 36 512 20,736

upper quar-
tile

129 5 25 11 71 2,048 331,776

maximum 280 32 51 17 576 131,072 20,054,016

mean 93 5 18 9 86 14,149 1,451,216

We emphasize that the median number of causes (predictors) was 15 and the median 

number of adjustment factors (covariates) was 9. These numbers by themselves suggest 

the great scope of the search space.

Nutritional epidemiologists have tended to believe they gain an advantage by study-

ing large numbers of outcomes, predictors, and covariates, on the presumption that this 

procedure maximizes their chances of discovering risk factor−health outcome associa-

tions.137 What they have maximized, rather, is their likelihood of registering a false posi-

tive. The median search space for the 15 randomly selected base study papers was 20,736. 

(See Figure 5.) We may calculate that 5 percent of these 20,736 possible questions asked 

133	 Willett (1985).
134	 Chan (2013).
135	 Héroux (2010).
136	 Foods = # of foods used in Food Frequency Questionnaire; Tests = Outcomes × Predictors; Models = 2k where k = 

number of Covariates; Search Space = approximation of analysis search space = Tests × Models. The lower quartile is 
the average of the fourth and the fifth lowest number in each category; the upper quartile is the average of the fourth 
and the fifth highest number in each category.

137	 Willett (1985).
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of a single typical FFQ−cohort data set underlying a nutritional epidemiology (observa-

tional) study will equal 1,036 chance findings that unwary researchers can take for a sta-

tistically significant result.

We also wished to estimate the number of published papers for each cohort study 

that informed the 15 randomly sampled base study papers, as more evidence that MTMM 

is not taken into account. In Figure 6 we present cohort study names, an estimate of the 

number of papers in the Google Scholar literature for each cohort, and an estimate of the 

number of papers in the Google Scholar literature for each cohort using FFQs.

Figure 6: Cohort study names, an estimate of papers in literature for each cohort, and 
an estimate of papers in literature cohort using FFQs for the 15 randomly sampled 

base study papers of Vernooij et al.138

Citation 
# Author Year Cohort Study Name Papers

Papers, 
Cohort 
+FFQ

48 Chan 2013 Mr. Os and Ms. Os (Hong Kong) 38,000 8

56 George 2014 WHI Women’s Health Initiative Observational Study 37,200 1,520

49 Chen 2013 HEALS and ‘Bangladesh’ 12,400 1,080

53 Maruyama 2013 JACC Japan Collaborative Cohort 4,740 758

57 Kumagai 2014 NHI Ohsaki National Health Insurance Cohort 4,270 122

47 Akbaraly 2013 Whitehall II study 4,160 1,800

99 Tonstad 2013 Adventist Health Study-2 2,630 653

80 Lv 2017 China Kadoorie Biobank 2,480 143

59 Pastorino 2016 MRC National Survey of Health and Development 1,860 148

31 McNaughton 2009 Whitehall II study 1,800 1,800

34 Panagiotakos 2009 ATTICA Study 1,650 1,650

8 Dixon 2004 DIETSCAN (Dietary Patterns and Cancer Project) 1,080 1,080

38 Héroux 2010 ACLS (Aerobics Center Longitudinal Study) 619 167

65 Lacoppidan 2015 Diet, Cancer, and Health (DCH) cohort 292 116

92
Chang-
Claude

2005 German vegetarian study 18 13

138	 Citation# = Vernooij et al. reference number, Author name = first author listed for reference; Year = publication year; 
Cohort Name = name of study cohort; Papers = # of papers in literature mentioning study cohort; Papers, Cohort 
+ FFQ = # of papers in literature mentioning study cohort using a Food Frequency Questionnaire (FFQ). Figure 6 
presents the results of 30 GS searches performed on 22 October 2021. For 15 GS searches, the phrase “cohort study 
name” was specified where the phrase occurs anywhere in the article. For the other 15 GS searches, the phrase 
“cohort study name” and the term “food frequency questionnaire” was specified where the phrase and term occur 
anywhere in the article. Note: a GS search is only an approximation as the literature changes rapidly and small changes 
in search specifications can change the results.
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Researchers evidently conducted large quantities of statistical testing on the data 

from each cohort. Yet none of these 15 base study papers provided correction for multi-

ple statistical tests and multiple statistical models (MTMM) used on the same cohort−FFQ 

data set.

We present summary statistics for the 15 randomly sampled base study papers in 

Figure 7.

Figure 7: Summary statistics for estimate of papers in literature for the 15 randomly 
sampled base study papers of Vernooij et al.139

Statistic Papers Papers, Cohort+FFQ

minimum 18 8

lower quartile 1,365 133

median 2,480 653

upper quartile 4,505 1,300

maximum 38,000 1,800

mean 7,547 737

Based upon the above information we have presented, we conclude that these re-

searchers used cohort study databases to examine large numbers of questions, both in 

general and particularly for FFQs, while making no correction for MTMM. So far as we 

can tell, this practice is typical of the field.

P-Value Plots

Our technical investigation focused on six health outcomes analyzed by Vernooij et 

al., including all-cause mortality, cardiovascular mortality, overall cancer mortality, 

breast cancer incidence, colorectal cancer incidence, and Type 2 diabetes incidence. We 

constructed p-value plots for these six health outcomes. (See Figure 8.)

139	 Papers = # of papers in literature mentioning study cohort; Papers, Cohort + FFQ = # of papers in literature mention-
ing study cohort using a Food Frequency Questionnaire (FFQ).
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Figure 8: P-value plots for meta-analysis of six health outcomes from Vernooij et al.

Each of the six images in Figure 8 indexes rank order (the x axis) and p-value (the y 

axis). We have ordered the p-values—the dots in the body of the six images—from small-

est to largest. The number of dots (p-values) in each image corresponds to the number of 

studies for each of the six health outcomes.

As noted in the Methods Section and in our previous work,140 if there is no effect the 

p-values will form roughly a 45-degree line. If the line is horizontal with most of the p-val-

ues small, then it supports a real effect. Finally, if the shape of the points is bilinear, then 

the results are ambiguous.

The p-value plots for all-cause mortality, cardiovascular mortality, overall cancer 

mortality and type 2 diabetes incidence appear bilinear, hence ambiguous. 

The p-value plots for breast cancer incidence and colorectal cancer incidence appear 

as approximate 450 lines, hence indicating a likelihood of no real association. 

The plot for colorectal cancer incidence, it should be noted, is very unusual, with sev-

en of the p-values on a roughly 450 line, two below the 0.05 threshold, and one extremely 

small p-value (6.2E-05). Scholars usually take a p-value less than 0.001 as very strong evi-

dence of a real effect, although some argue that very small p-values may indicate failures 

of research integrity.141 If the small p-values indicates a real effect, then p-values larger 

than 0.05 should be rare.

140	 Young (2019a).
141	 Al-Marzouki (2005); Boos 2011; Roberts (2007); Bordewijk 2020.
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The sub-figure for Type 2 diabetes incidence (lower right-hand side) has a p-value 

plot appearance of a real effect. On closer examination of the p-values and associated 

measured effects, however, the two smallest p-values (4.1 x 10-9 and 1.7 x 10-7) have con-

trary results—the first is for a decrease of effect and the second is for an increase of effect. 

Our analysis suggests some support for a real association between red or processed meat 

and diabetes—but with the caution that the ambiguous results of the two smallest p-val-

ues makes us hesitant to endorse this result too strongly. We must note here a caution 

about research integrity,142 which we will discuss at greater length below.

Each health outcome presented in Figure 9 displays a wide range of p-value results. 

(See Figure 9.) In the meta-analysis of breast cancer incidence, for example, p-values 

ranged from <0.005 to 1 across 19 base studies (>2 orders of magnitude). In the meta-anal-

ysis of Type 2 diabetes incidence, the p-values ranged all the way from <5 x 10-09 to 0.43 

(>8 orders of magnitude). Such extraordinary ranges require a further caution about re-

search integrity.

Figure 9: Minimum and maximum p-values for six health outcomes shown in Figure 9 
from Vernooij et al.143

Health outcome Number of p-values Minimum p-value Maximum p-value

All-cause mortality 25 5.97E-12 1

Cardiovascular mortality 27 6.43E-06 0.822757

Overall cancer mortality 19 0.000318 0.889961

Breast cancer incidence 19 0.002434 1

Colorectal cancer incidence 19 6.2E-05 0.779478

Type 2 diabetes incidence 16 4.1E-09 0.43304

The smallest p-value from Figure 10 is 6.0 x 10-12—a value so small as to imply certain-

ty.144 A p-value this small may register a true finding—and small p-values are more likely 

in studies with large sample sizes.145 Yet the wide range of p-values in similar studies, in-

cluding several which register results far weaker than p<.05, means that we must con-

sider alternative explanations. These include some form of bias (systematic alteration of 

research findings due to factors related to study design, data acquisition, and/or analysis 

or reporting of results)146 and data fabrication.

142	 Roberts (2007); Redman (2013); Bordewijk 2020.
143	 Vernooij (2019). Note: In the table we use the exponent “E” to represent 10; for example, 5.97E-12 is 5.97 x 10 -12.
144	 Boos (2011). 
145	 Young (2008).
146	 Boffetta (2008).
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Selective reporting proliferates in published observational studies where research-

ers routinely test many questions and models during a study and then only report “sup-

posedly statistically significant but false” results.147

We sought circumstantial evidence of such selective reporting. We therefore further 

investigated one of the six health outcomes in Figure 8—all-cause mortality—and identi-

fied all of the base cohort studies.148

We present these results in Figure 10 ranked by p-value, along with the Vernooij et 

al. risk ratios (RRs) and confidence limits (CLs) from which we computed the p-values. A 

cohort study typically examines many outcomes, predictors, and covariates. The larger 

the number of citations, the greater the number of outcomes examined on a cohort study.

Figure 10: Characteristics of 24149 cohort statistics for Vernooij et al. meta-analysis of 
all-cause mortality outcome150

Rank Citations RR CLlow CLhigh p-value Cohort Study Name

1 1,390 1.49 1.33 1.67 5.97E-12 Shanghai Men’s Health Study

2 86,400 1.31 1.19 1.44 3.61E-08 Health Professionals’ Follow-up Study

3 6,270 1.25 1.15 1.36 1.56E-07 Adventist Health Study

4 81,100 1.22 1.11 1.34 3.71E-05 Women’s Health Initiative

5 125,000 1.17 1.08 1.26 .000121 Nurses’ Health Study

6 270 1.20 1.09 1.34 .000202 Adventist Mortality Study

7 5,580 1.14 1.06 1.23 .000406 Singapore Chinese Health  Study

8 2,160 1.33 1.12 1.58 .00114 Black Women’s Health Study

9 14,400 1.22 1.08 1.38 .00139 Swedish Women’s Lifestyle and  
Health cohort

10 5,440 1.15 1.05 1.26 .00260 Shanghai Women’s Health Study

11 420 0.91 0.85 0.96 .00673 Japan Public Health Center-based Pro- 
spective (JPHC) Cohort I

12 85 0.90 0.83 0.98 .0108 Health Food Shoppers Study

13 2,670 1.11 1.02 1.21 .0156 Adventist Health Study 2 (AHS-2) M

14 136,000 1.43 1.04 1.96 .0277 Third National Health and Nutrition 
Examination Survey Men

15 1,430 1.52 1.04 2.20 .0306 Seguimiento Universidad de Navarra 
(SUN) project

16 2,670 1.10 1.00 1.21 .0500 Adventist Health Study 2 (AHS-2) W

147	 Gotzsche (2006).
148	 Figure 10 presents the results of 23 GS searches performed on 3 August 2021 with the phrase “cohort study name”, 

where the phrase occurs anywhere in the article for each search. Note: (1) there are 23 study cohorts listed with one 
cohort (Adventist Health Study 2 (AHS-2)) used twice; (2) a GS search is only an approximation as the literature changes 
rapidly and small changes in search specifications can change the results.

149	 Note that there are 25 studies and 24 cohorts as two studies used the same cohort.
150	 Rank = p-value rank; Citations = # of citations in literature mentioning study cohort; RR = Relative Risk; CLlow = lower 

confidence limit; CLhigh = upper confidence limit
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17 37,500 1.37 0.80 2.34 .251 European Prospective Investigation 
into Cancer and Nutrition (EPIC)

18 3,690 1.18 0.86 1.64 .305 Aerobics Center Longitudinal Study

19 18 0.91 0.74 1.12 .371 German Vegetarian Study

20 219,000 1.14 0.83 1.55 .418 Third National Health and Nutrition 
Examination Survey

21 23,000 1.08 0.80 1.45 .615 Health, Aging, and Body Composition Study 
(Health ABC)

22 31,400 1.05 0.82 1.35 .699 Whitehall II Study

23 3,600 1.04 0.74 1.46 .821 PREvención con DIeta MEDiterránea 
trial (PREDIMED)

24 587 1.00 0.87 1.15 1.000 Oxford Vegetarian Study

The extraordinarily large number of citations associated with each cohort study pro-

vides substantial circumstantial evidence of selective reporting.
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Case Study #2: Soy Protein/FDA Case Study

Introduction

For our second case study we chose to analyze Blanco Mejia et al.’s 2019 meta-analy-

sis of soy protein base studies, which the FDA is using to decide whether to revoke 

the soy protein heart health claim.151 Blanco Mejia et al. performed a meta-analysis 

of 46 randomized controlled trials (RCTs) on men and women, which observed soy protein 

intake and lipid markers (LDL cholesterol and other cholesterol markers) as surrogates 

for cardiovascular disease (CVD) risk reduction.152 

We focused our analysis on one aspect of their meta-analysis: LDL cholesterol as a 

surrogate for cardiovascular disease risk reduction. We used the same statistical strat-

egy, analysis search space counting and p-value plots, to assess a soy protein intake-LDL 

cholesterol health claim.

Data Sets

Blanco Mejia et al. analyzed the 46 dietary randomized trials in humans concerning 

heart health listed by the FDA.153 Blanco Mejia et al. reviewed all 46 dietary trials (stud-

ies) in full and selected 43 studies providing 50 study comparison statistics to use for me-

ta-assessment of the soy protein intake—LDL cholesterol reduction health claim.

Blanco Mejia et al. concluded that, “soy protein lowers LDL cholesterol by a small but 

significant amount. Our data fit with the advice given to the general public internationally to 

increase plant protein intake.”154 The Blanco Mejia et al. meta-analysis supports the 1999 

health claim.

Results

Below we present results of our technical investigation about the association be-

tween soy protein intake and LDL cholesterol reduction reported by Blanco Mejia et al.155

151	 Blanco Mejia (2019).
152	 Blanco Mejia (2019).
153	 Blanco Mejia (2019).
154	 Blanco Mejia (2019).
155	 Blanco Mejia (2019).
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Counting

We randomly selected 9 of the 43 base study papers (21%) for counting purposes. As 

noted above, a 5-20% sample from a population whose characteristics are known is con-

sidered acceptable for most research purposes, as it provides an ability to generalize for 

the population.156 We also have accepted Blanco Mejia et al.’s judgment that their screen-

ing procedures selected 43 base study papers with sufficiently consistent characteristics 

for use in meta-analysis.

We present summary characteristics for the 9 RCT base study papers we randomly 

selected from the Blanco Mejia et al. 43 base study papers in Figure 11. 

Figure 11: Characteristics of 9 randomly selected RCT papers from Blanco Mejia et al. 
(2019)157

Citation 
#

Base 
Paper 

1st  
Author

Year Outcomes Causes 
(Predictors)

Yes/no 
Adjustment 
Factors (Co-

variates)

Tests Models Search 
Space

15 Bakhit 1994 8 5 3 40 8 320

19 Chen 2006 9 1 4 9 16 144

33 Hori 2001 20 1 0 20 1 20

36 Jenkins 2000 14 1 0 14 1 14

41 Ma 2005 20 6 0 120 1 120

43 Mangano 2013 6 3 0 18 1 18

52 Takatsuka 2000 10 2 0 20 1 20

56 Van Horn 2001 3 4 1 12 2 24

60 Wong 1998 14 4 3 56 8 448

The median search space of these 9 RCT base study papers was 24, a much smaller 

number than the median search space of 20,736 for the 15 of 105 Veernooij et al. observa-

tional base study papers that we counted. (See Figure 4.)

Although no study is likely on its own to prove causality, randomization in RCT design 

is intended to reduce bias and provide a more rigorous means than observational stud-

ies for examining cause-effect relationships between a risk factor/intervention and an 

outcome.158 Randomization promotes balancing of participant characteristics (both ob-

served and unobserved) between the study groups allowing attribution of any differences 

156	 Creswell (2013).
157	 Citation# is Blanco Mejia et al. reference number, Author name is first author listed for reference; Year = publication 

year; Tests = Outcomes × Predictors; Models = 2k where k = number of Covariates; Search Space = approximation of 
analysis search space = Tests × Models; Medians = 20 (Tests), 1 (Models), 24 (Search Space).

158	 Hariton (2018).
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in outcome to the study intervention. In theory, results of a meta-analysis of RCTs should 

be superior to those from a meta-analysis based on observational studies.159

P-Value Plots

We present the p-value plot for meta-analysis of the association between soy protein 

intake and LDL cholesterol reduction from Blanco Mejia et al. in Figure 12. 

Figure 12: P-value plot for meta-analysis of the association between soy protein intake 
and LDL cholesterol reduction from Blanco Mejia et al.

The p-value plot is clearly bilinear and hence ambiguous. Most of the p-values are on 

a roughly 45-degree line.

159	 As noted above, RCTs do not as yet standardly account for the latest research, which is broadening our knowledge of 
the substantial individual and group variation in response to nutritional substances. Cecil and Barton (2020). While we 
do not address in this report this particular weakness in RCTs, scientists should also take account of it.
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Conclusions

Red and Processed Meats: Evidence of 
P-Hacking or Research Integrity Violations

Most nutritional epidemiologists now believe that red and processed meat 

are associated with severe health effects.160 The International Agency for 

Research on Cancer (IARC), the cancer research agency of the World Health 

Organization, has classified red meat as probably carcinogenic to humans and processed 

meat as certainly carcinogenic to humans.161

This consensus is brittle. Other researchers have challenged the nutritional epide-

miologists’ consensus on other grounds. For example, as described below, Vernooij et al. 

argue the base observational studies are unreliable.162 The popular press, rather than 

deferring to a professional consensus, also has pushed back against this paradigm—not 

least by citing popular low-carbohydrate and high-meat diets (Atkins, etc.) that do not 

seem to have imposed ill effects on their practitioners.163 The nutritional epidemiologists’ 

consensus on the carcinogenic effects of red and processed meats does not possess full 

authority with either professionals or the public.

The Johnston research group (Vernooij et al.) has provided some of the strongest 

arguments to date against the nutritional epidemiologists’ consensus. Their large-scale 

systematic review and meta-analysis of the 105 base study papers studying the health 

effects of red and processed meats has provided strong evidence that the base study pa-

pers, generally observational studies, provided low- or very-low-certainty evidence164 ac-

cording to GRADE criteria.165 Many nutritional epidemiologists reacted to their research 

extremely negatively. Some asked the editor of Annals of Internal Medicine, which accepted 

their study, to withdraw the paper before publication.166 

Here we present further evidence, arrived at by a different line of critique, that the 

studies that claim severe health effects for red and processed meats are unreliable. The 

Johnston research group provided strong evidence that these studies relied on very 

weak proof; our study provides strong evidence that these studies, properly examined 

160	 For example, see Battaglia (2015); Ekmekcioglu (2018).
161	 WHO (2015).
162	 Delgado (2021).
163	 Bueno (2013); Castellana (2021); Taubes (2021).
164	 Vernooij (2019).
165	 Guyatt (2008).
166	 Monaco (2019); Arends (2020).
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statistically (counting and p-value plots) for false positives and possible research integri-

ty violations, provide no evidence at all that the claim is valid.

We believe that our critique applies more broadly to virtually every health claim 

based on FFQ data—indeed, that it applies to every nutrition study. Peace already has 

noted that FFQ research almost always reports the smallest or near-smallest p-value 

of many that were or could be computed.167 Nutritional epidemiology’s reliance on FFQ 

research has spread endemic selection bias, facilitated by uncorrected multiple testing, 

throughout the discipline.

Nutritional epidemiologists’ failure to correct for multiple testing registers epide-

miologists’ larger failing. Stroup et al., for example, provided a proposal for reporting 

meta-analysis of observational studies in epidemiology.168 This proposal is frequently 

referred to in published literature—16,676 Google Scholar citations as of November 5, 

2021.169 Yet Stroup et al. make no mention of observational studies’ MTMM problem and 

offer no recommendation to control for MTMM. We observe that epidemiologists are usu-

ally silent about MTMM, but when they do address the subject, they often are adamant 

that no correction for MTMM is necessary.170 We are not aware of any epidemiological 

article, institutional statement, or government regulation that has prescribed a MTMM 

correction for observational studies or directed meta-analysis researchers to account for 

MTMM bias.

Meta-analyses provide 

greater evidentiary value if 

and only if they combine re-

sults from base studies that all 

use reliable data and analysis 

procedures.171 Base studies 

that do not correct for MTMM 

do not provide reliable data for 

meta-analyses. Furthermore, 

meta-analyses that combine base studies some of which do and others that do not correct 

for MTMM are not combining comparable studies. Either flaw suffices to render useless 

any meta-analysis that relies on even a single base study that fails to correct for MTMM. 

Moreover, if some base studies use fabricated or falsified data, as discussed below, that 

adds further irredeemable flaws to the meta-analysis. 

167	 Peace (2018).
168	 Stroup (2000).
169	 GS (2021d).
170	 Rothman (1990).
171	 Fisher (1950); DerSimonian (1986).

“To our knowledge, we are not aware of 
any epidemiological article, institution-
al statement, or government regulation 
that has prescribed a MTMM correction 
for observational studies or directed 
meta-analysis researchers to account for 
MTMM bias”
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Our bilinear p-value plots in Figure 8 provide strong evidence that nutritional epide-

miological meta-analyses have examined base studies that do not use comparable meth-

ods—some may have corrected for MTMM, but most have not.172 Alternately, the bilinear 

plots may register the existence of one or more powerful covariates correlated with the 

predictor variable in some of the studies—that, for example, cardiorespiratory fitness 

was confounded with dietary risk of mortality.173 The existence of an unrecognized co-

variate would also render nugatory the meta-analysis’ results. Again, fabricated or falsi-

fied data cannot be ruled out.

The exceedingly large analysis search spaces in the 15 randomly selected base study 

papers of Vernooij et al. (Figure 4 and Figure 5) also make it plausible to believe that the 

small p-values among the base studies may be derived from p-hacking, which other re-

searchers have shown is extraordinarily widespread.174 The large number of papers de-

rived from these cohort studies strengthens the plausibility of this proposition (Figure 6 

and Figure 7). 

The phrase “p-hacking” implies culpable volition, and we possess no statistical test to 

distinguish negligence from deliberate act. Nor can we immediately detect more severe 

breaches of research integrity. (See below.) In any case, the base studies’ lack of correc-

tion for MTMM renders them unfit for meta-analysis. 

Soy Protein: Evidence of Research Integrity Violations

The nine base study papers that we analyzed in detail from the Blanco Mejia et al. 

meta-analysis had much smaller search spaces than those we analyzed from Vernooij et 

al.—a median search space of 24, within a range from 18 to 448. (See Figure 11.) Blanco 

Mejia et al. studied randomized controlled trials rather than observational studies. This 

difference likely accounts for the smaller number of search spaces, as researchers who 

conduct RCTs usually pre-select a single outcome variable and a single treatment vari-

able, and randomization typically leads to fewer covariates. 

Our analysis of the soy protein intake—LDL cholesterol reduction claim, however, 

parallels our analysis of the claim for health effects from red and processed meats. The 

p-value plot yielded a strong bilinear pattern—a collection of studies with p-values both 

greater than and less than 0.05. (See Figure 12.) 

Here we must address the possibility of research integrity violations as an explana-

tion for the small p-values. We think most false research conclusions arise inadvertently, 

172	 Young (2019a).
173	 Héroux (2010).
174	 Head (2015).
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produced by flaws in conventional methods used for the standard practice of scientific 

and epidemiologic research—especially by misapplication of statistical methods.175 Yet 

research integrity violations certainly exist and must not to be taken lightly.176 

Tugwell classifies research integrity violations as:

•	 Data fabrication (e.g., use of data from an uncredited author or generation of 

completely artificial data);

•	 data falsification (e.g., editing or manipulation of authentic data to ‘‘support’’ 

a hypothesis);

•	 unethical conduct (e.g., failure to obtain institutional review board approval, 

failure to obtain patients’ informed consent, forgery of secondary authors’ 

signatures on submission, other breaches of ethical guidelines); and

•	 error (e.g., duplicate publication, scientific mistake, journal error, unstated 

reasons for retraction).177

George notes that evidence in the published literature for clinical trials suggests 

that cases of the most serious types of research misconduct—data fabrication and falsi-

fication—are relatively rare, but that other types of questionable research practices are 

quite common.178 This view would lead one to believe that spectacular individual scien-

tific rogues such as Yoshitaka Fujii (183 retracted papers), Yoshihiro Sato (60 retracted 

papers), Diederik Stapel (55 retracted papers), and Brian Wansink (13 retracted papers) 

are shameful but atypical, and not the visible portion of an iceberg of research integrity 

violations.179

Researchers such as Ian Roberts, Barbara K. Redman, and Esmee Bordewijk, howev-

er, contend that research integrity violations are substantially more common, facilitated 

by systematically lax oversight by journals and institutions—not least their failure to re-

quire researchers to provide their data sets.180 Their views have not yet been accepted by 

the scientific community as a whole—even though recent controversies about research 

pertaining to hydroxychloroquine and COVID underscore both the existence of research 

integrity violations and their effect on matters of great practical import.181 Funding 

agencies and editors, the controllers of the research process, appear not to believe that 

there are enough research integrity violations to require a systemic overhaul of their 

procedures.

175	 Bross (1990); Bross (1991); Feinstein (1988b); Schneiderman (1991).
176	  Feinstein (1988a); Feinstein (1988b); Mayes (1988); Al-Marzouki (2005); Marcovitch (2007); Roberts (2007, 2015); Red-

man (2013); Grey (2020); Hayden (2020); Bordewijk (2020); Smith (2021).
177	 Tugwell (2017).
178	 George (2016).
179	 Retraction Watch (2021).
180	 Roberts (2007); Roberts (2015); Redman (2013); Bordewijk (2020).
181	 See Mehra (2020) and Open Letter (2020).
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The lack of MTMM control most likely provides a sufficient explanation for the bilin-

ear pattern the 15 randomly selected base study papers of Vernooij et al. display. (Figure 

8.)182 Yet we did not expect to see the same bilinear pattern appear in our analysis of a 

meta-analysis based on randomized controlled trials (RCTs). RCTs have a good reputa-

tion precisely because they pre-select for investigation a single outcome variable and a 

single treatment variable—a method that among other virtues substantially reduces both 

multiple testing and bias from likely modeling effects. Indeed, DerSimonian and Laird 

predicated their meta-analysis approach on these characteristics of high-quality RCTs.183 

Nevertheless, our p-value plot of the randomly selected base studies in the Blanco 

Mejia et al. study also produced a bilinear pattern, even though they were RCTs (Figure 

12). We discovered 13 p-values below 0.05 supporting an effect and 37 above, supporting 

no effect. One of these small p-values—0.02037—is for an ‘increase’ (instead of decrease) 

in LDL cholesterol.  The usual attention to control of MTMM of RCTs as compared with 

observational studies renders it less likely than that such a bilinear pattern could have 

emerged from randomness or negligence.

Our methods and conclusions cannot by themselves prove individual or systematic 

research integrity violations. But we believe they provide enough circumstantial evi-

dence of widespread research integrity violations in the scientific community to prompt 

our scientific institutions to take sweeping measures to reduce the number of future re-

search integrity violations. 

Most practically, institutions such as the U.S. Department of Health and Human 

Services’ Office of Research Integrity (ORI), and other oversight entities, should set up 

procedures that will systematically inhibit research integrity violations.184 We provide 

recommendations, below, which we believe will substantially improve oversight policy at 

scientific institutions.

General Conclusions

We draw two conclusions from our investigation of the Vernooij et al. observation-

al-based red and processed meats meta-analysis: 

•	 Our analysis, complementing and deepening that of the Johnston research 

group, reveals that the base study papers used in the red and processed meat 

meta-analysis provide no evidence at all for the claimed health effects.

182	 Young (2012).
183	 DerSimonian (1986).
184	 ORI (n.d.).
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•	 Our analysis more broadly calls into question all similar observational 

research and meta-analyses drawing on FFQs and cohort studies that have 

not corrected for MTMM—which is, unfortunately, a very large proportion of 

nutritional epidemiology.

We draw the following conclusion from our investigation of the Blanco Mejia et al. 

RCT-based meta-analysis: 

•	 Our analysis supports the FDA’s preliminary decision to revoke the 1999 

health claim that links soy protein to heart health. 

•	 Our analysis suggests that institutions, especially government agencies that 

evaluate scientific information as the basis for regulatory policy, should 

establish rigorous procedures to inhibit research integrity violations.

From our analysis of both meta-analysis studies, we agree with Redman that 

self-regulation, peer review, and editorial review, is not working well enough to support 

meta-analysis.185

185	 Redman (2013).
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Recommendations to the FDA

All nutritional epidemiologists—all scientists—should improve their methodolo-

gies to address the irreproducibility crisis. Yet to address scientists is to address 

a diffuse audience—and an audience that has so far proved resistant to many 

suggestions that they reform their practices. We therefore address our recommendations 

particularly, if not exclusively, to the FDA.

We do this partly because the FDA ought to address the frailties of nutritional epi-

demiology, which our analysis has highlighted, so as to improve the science that informs 

its regulations. We do this partly because the FDA, like federal regulatory agencies in 

general, possesses unmatched power, by dint of the regulatory and financial resources at 

its disposal, to improve scientific practices among scientists in general. We do this partly 

because the FDA is well-positioned to model reform for its peer regulators.

All these recommendations are intended to bring FDA methodologies up to the level of 

best available science, as per the mandate of The Information Quality Act.186 Best Available 

Science now means scientific procedures that systematically address the challenges of the irre-

producibility crisis.

We make the following recommendations:

1.	 The FDA should adopt controls for Multiple Testing and Multiple 

Modeling as part of its standard battery of tests applied to nutritional 

epidemiology research.

We have critiqued at length the standard procedure of nutritional epidemi-

ology meta-analysis, which has proven susceptible to statistical frailties. The 

corollary of this critique is that the FDA should adopt the standard procedure, 

elaborated in a work partly written by one of our co-authors more than a quar-

ter century ago,187 to control for nutritional epidemiology’s Multiple Testing and 

Multiple Modeling (MTMM) problem both in observational research and in RCTs.

This resampling-based multiple testing procedure already has been incor-

porated into a variety of disciplines, including genomics188 and economics,189 and 

has been shown to be optimal for a broad class of hypothesis testing problems.190 

Any discipline using statistics can incorporate these procedures into their reg-

ular tests. Any government agency that relies on scientific research can require 

the use of such procedures to test scientific research, before it is used to justify 

regulation, or qualify as best available science. The FDA should do so.

186	 IQA (2000); OMB (2019).
187	 Westfall (1993).
188	 Ge (2003).
189	 Jones (2019a); Jones (2019b); and see Romano (2016).
190	 Cox (2008); Meinshausen (2011).
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The FDA, in other words, should only rely on base studies and meta-analy-

ses that use a resampling methodology (MTMM) to correct their results. The FDA 

should also subject all such research to independent MTMM analyses.

MTMM analysis is not the only tool that can be used to adjust an analysis for 

p-hacking and other forms of biased sampling. But we believe it is a useful tool, 

which can easily be adopted by regulators and researchers to apply a severe test 

to scientific research.191 We do not propose it as a cure-all, but as a tool useful in 

itself, and also as an example of how to introduce reproducibility reforms into 

the ordinary procedures of professional and governmental judgments of scien-

tific validity.

2.	 The FDA should take greater cognizance of the difficulties associated 

with subgroup analysis.

Groups and individuals vary sufficiently in their responses to the same sub-

stances that it is conceivable that the FDA should not be attempting to give gen-

eral nutrition advice to the public. Nutritional scientists and regulators therefore 

rightly aim to consider whether particular substances have different effects on 

different subgroups, defined by categories such as race and sex. Yet subgroup 

analysis multiplies the number of statistical operations and therefore multiplies 

the possibility of producing false positives. FDA policy for MTMM correction 

should include explicit and detailed consideration of how to apply it to subgroup 

analysis.192

3.	 The FDA should require all studies that do not correct for MTMM to be 

labeled “exploratory.”

Research that does not correct for MTMM is exploratory rather than confir-

matory and should be labeled clearly as such. The FDA should follow up on this 

reform either by ruling that its regulatory decisions cannot rely on exploratory 

research or, as a second best, by requiring regulators to explain in detail why 

they include exploratory research in their weight-of-evidence assessments.

4.	 For nutritional health claims, the FDA should rely exclusively on 

meta-analyses that use tests to take account of endemic HARKing, 

p-hacking and other questionable research procedures.

HARKing, p-hacking, and other questionable research procedures are en-

demic in nutritional epidemiology—as they are in many disciplines affected by 

the irreproducibility crisis. Since so many base studies are unreliable, the me-

ta-analyses which collate these base studies likewise have become unreliable.193 

191	 For the concept of “severe testing,” see Mayo (2018).
192	 Cf. Van der Laan (2011).
193	 Ioannidis (2013, 2018); Trepanowski (2018).
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When the FDA uses meta-analyses or a systematic review to approve nutri-

tional health claims, it should only rely on meta-analyses that conduct rigorous 

tests to detect whether a field’s base studies have been affected by HARKing, 

p-hacking, and other questionable research procedures. While we will not pre-

scribe further particular methods here, we state that existing tests are not suffi-

cient.194 The FDA should adopt tests substantially more stringent than those they 

currently accept.

5.	 In approving nutritional health claims, the FDA should redo its assess-

ment of base studies more broadly to take account of endemic HARKing, 

p-hacking and other questionable research procedures.

The different aspects of the irreproducibility crisis—HARKing, p-hacking, 

and other questionable research procedures—thrive opportunistically within 

research structures that allow scientists to conceal their questions and their 

data. Requiring research transparency will reduce the chance that the irrepro-

ducibility crisis will affect FDA approval of nutritional health claims. FDA can 

best proceed by requiring preregistration of research and public access to re-

search data.

6.	 The FDA should require preregistration and registered reports of all 

research that informs FDA approval of nutritional health claims. 

Swaen et al. have noted that, “The strongest factor associated with the false 

positive or true positive study outcome was if the study had a specific a priori 

hypothesis. Fishing expeditions had an over threefold odds ratio of being false 

positive.”195 Preregistration and registered reports, using the procedures and 

resources of organizations such as the Center for Open Science (https://www.

cos.io),  will constrain the ability of scientists to HARK, inhibit p-hacking, and 

generally limit other questionable research procedures. Preregistration and 

registered reports are not cures. Determined scientists in time undoubtedly will 

devise methods to undermine the effectiveness of these precautions. But pre-

registration and registered reports will substantially improve the reliability of 

research used by the FDA. The FDA should stipulate that all preregistration and 

registered reports must detail the MTMM methods that will be used to assess 

results. 

7.	 The FDA should also require public access to all research data used to 

approve nutritional health claims. 

Generally, any supplicant should provide the FDA with their analysis data 

set. Scientists often claim that analysis data sets cannot be made public because 

194	 Carter (2019).
195	 Swaen (2001).

https://www.cos.io/
https://www.cos.io/
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they must prevent the disclosure of the identity of human subjects. This claim 

is not persuasive, since we now possess standard methods such as micro-aggre-

gation that can prevent such disclosures.196 Scientists should be expected to use 

such procedures as standard practices. The FDA should only use research papers 

that provide publicly accessible research data to inform regulatory decisions. 

Researchers should also be required to inform the FDA about every other piece 

of published research that has been based on the same analysis data set, to allow 

for proper MTMM assessment.

8.	 The FDA should place greater weight on reproduced research.

We have specified the use of improved statistical techniques to reduce the 

effects of the irreproducibility crisis in nutritional epidemiology. But such statis-

tical tests cannot catch every sort of questionable research procedure. Indeed, 

research that passes every statistical test might still be a false positive. The FDA 

therefore should increase the weight it assigns to research that is not only repro-

ducible, but that has also been reproduced—and decrease the weight it assigns to 

research that has not yet been reproduced.

Indeed, Richard Smith—a former editor of BMJ—recently blogged that there 

is substantial evidence of research integrity violations with small, randomized 

medical studies.197 We note that standard meta-analysis computations are not ro-

bust if they contain even one such study.

9.	 The FDA should consider the more radical reform of funding data set 

building and data set analysis separately. 

Researchers who combine data collection and data analysis possess a temp-

tation to adjust the data to improve results of their analyses. The FDA should con-

sider separating these two functions, so as to remove the situation that presents 

this temptation. It should also consider combining this reform with a require-

ment that researchers provide a held-out data set to a trusted third party before 

analysis, so that any analysis claim can be tested independently using the held-

out data set.198

10.	 The FDA should exercise care in the use of the “weight of evidence” stan-

dard to assess both base studies and meta-analyses, to take account of 

the irreproducibility crisis.

The “weight of evidence” principle generally facilitates arbitrary judgments 

as to what science should inform government policy or regulation. Wherever 

possible, the FDA should substitute transparent rules for “weight of evidence” 

196	 El Emam (2009).
197	 Smith (2021).
198	 Cf. Van der Laan (2011).
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judgments, in particular the rules for accepting or rejecting papers to be used 

in a meta-analysis. If the FDA conducts a meta-analysis, it should provide clear 

rules for accepting/rejecting the base study papers used.

11.	 The FDA should not fund or rely on research of other organizations until 

these organizations adopt sound statistical practices. 

The FDA should not fund external organizations, such as the World Health 

Organization (WHO) and the International Agency for Research on Cancer 

(IARC), until they adopt sound statistical practices. Neither should it rely on their 

research to inform its regulatory decisions.

12.	 The FDA should establish systematic procedures to inhibit research 

integrity violations.

The FDA, as well as other federal departments and regulatory agencies that 

share responsibility for funding and assessing nutritional research,199 should 

establish systematic procedures to inhibit research integrity violations. We 

may phrase this positively as a call for the FDA to mandate a system of Good 

Institutional Practices (GIP) for all recipients of FDA money, and for all research 

that informs FDA regulatory decisions.200 GIP should include practices such as:

i.	 annual training for principal investigators and students in applying 

research ethics to data analysis (e.g., lessons to avoid bad practices such 

as p-hacking and HARKING); 

ii.	 random audits of laboratory note books; 

iii.	 whistleblower systems for research integrity violations;

iv.	 real consequences for delinquent researchers, including bars on grant 

applications, lost lab space, and bars on accepting new members into 

their research groups;

v.	 annual reporting requirements by institutions receiving FDA funds;

vi.	 real consequences for institutions that fail to enforce GIP in their insti-

tutions, including institutional loss of eligibility for government fund-

ing; and

vii.	 established procedures within the FDA to ensure compliance with GIP 

guidelines.

199	 Such federal departments and regulatory agencies include the United States Department of Agriculture (USDA), and 
in particular its Food and Nutrition Service (FNS) and the Center for Nutrition Policy and Promotion (CNPP). There are 
other nutrition organizations within the Department of Health and Human Services, such as the Office of Nutrition 
Research in the National Institutes of Health, the Office of Disease Prevention and Health Promotion, and the Centers 
for Disease Control.

200	 Begley (2015).
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Scope and Implementation

We believe the FDA should not overturn previously approved nutritional health 

claims arbitrarily as it implements our recommendations. Regulatory stability is an im-

portant goal for the Federal government, and indeed for any system of laws and regula-

tions. American enterprises have invested substantial resources in nutritional research, 

and their investments should not casually be set at naught.201

Yet nutritional health claims can amount to a competitive advantage to large cor-

porations against small ones, since large companies have greater capacity to fund re-

search that favors their products. While regulatory stability must be one important goal 

for the Federal government, it should not be used to provide an enduring competitive 

advantage to big business—and particularly not an advantage predicated upon publiciz-

ing health claims that are, all too frequently, both misleading and poorly substantiated. 

Furthermore, the costs of false health claims are borne ultimately by American consum-

ers—American citizens.

When new data, new analysis methods, and new theory call into question and over-

turn previously established science, the nutritional health claims that the now-discred-

ited science once justified should be dismantled—if not in haste, then with all deliberate 

speed. We should not grandfather bad nutritional science forever—or even for very long. 

Final Considerations

We have used the phrase “irreproducibility crisis” in this report. Many scientists 

agree that there are serious problems with nutritional research, for which the term “cri-

sis” seems an appropriate descriptor.202 Other distinguished meta-researchers, however, 

prefer to regard the current situation as an “irreproducibility challenge.”203 We do be-

lieve that HARKing, p-hacking, and other questionable research procedures, including 

research integrity violations, are endemic within science, and particularly within nutri-

tional epidemiology. We also recognize that not every reader will acknowledge that such 

a crisis exists. 

For readers who regard the current situation as an irreproducibility challenge, we 

say that you do not need to believe there is an irreproducibility crisis. You can believe that 

it is better to regard these problems as irreproducibility challenges. Whether challenge 

or crisis, these scientific practices are not the best available science. We should use the best 

201	 Randall (2020).
202	 Kristal (2005); Ioannidis (2013); Ioannidis (2018); Trepanowski (2018); Gorman (2020).
203	 Fanelli (2018).



79Recommendations to the FDA

scientific practices simply be-

cause they are the best scientific 

practices. Mediocrity ought not 

be the standard.

This applies doubly to the science that underpins government (FDA) approval of nu-

tritional health claims. Statistical research that seeks out associations must justify itself 

against the null hypothesis. Likewise, nutritional health claims must justify themselves 

against the null hypothesis of citizen free choice—that it is better for government to do 

nothing and for the republic’s citizens to exercise their freedoms untrammeled. Research 

used to justify government approval of nutritional health claims, even more than ordi-

nary research, should survive every severe test available before it is taken as credible.

This has long been the spirit of American regulatory policy. Our policymakers, rep-

resenting the American people, long ago decided that regulations must justify themselves 

with the best available science—that is, science that has passed the severest tests. They 

used this phrase to defend the welfare of the American people, not to facilitate the abro-

gation of its liberties; best available science should restrict government bureaucrats from 

exercising arbitrary power.

We have subjected to serious scrutiny the science underpinning nutritional health 

claims in relation to red and processed meat and soy protein. We believe the FDA should 

take account of our methods as it considers particular health claims. Yet we care even 

more about reforming the procedures the FDA uses in general to assess nutritional science. 

Government regulatory procedure matters far more than any particular implemen-

tation of regulatory policy. Validation procedures for statistical data matter the most of 

all, regardless of how they affect government policy—for science cannot reliably seek out 

truth on a foundation of rotten procedure.204 This report focuses on FDA regulatory poli-

cy, but we must never lose sight of that loftier goal.

The government should use the very best science—whatever the regulatory conse-

quences. Scientists should use the very best research procedures—whatever results they 

find. Those principles are the twin keynotes of this report. The very best science and re-

search procedures involve building evidence on the solid rock of transparent, reproduc-

ible, and reproduced scientific inquiry, not on shifting sands.

204	 Chambers (2017); Harris (2017); Hubbard (2015); Ritchie (2020).

“Best available science should restrict 
government bureaucrats from exercising 

arbitrary power.”
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Appendix 1: Multiple Testing and Multiple Modeling (MTMM) and 
Epidemiology

Multiple Testing and Multiple Modeling (MTMM) controls for experiment-wise 

error—the probability that at least one individual claim will register a false 

positive when you conduct multiple statistical tests.205 It is instructive to trace 

some of the history of examples of MTMM with respect to epidemiology.

Friedman made a research claim in 1959 that Type A personality was associated with 

heart attacks.206 Several later studies failed to replicate these results. Expert committees 

found fault with these latter studies and the Type A personality-heart attack claim lives 

to this day. Yet Friedman’s initial study examined hundreds of distinct analytical ques-

tions. It is very likely that the association is nothing more than a multiple-testing false 

positive.207

In 1974, a Lancet paper noted an association of the popular blood-pressure drug reser-

pine and breast cancer, with a p-value < 0.01.208 Several later studies failed to replicate 

these results.209 Sam Shapiro, a co-author of the original Lancet paper, later explained 

that,

Slone and I came to realize that our initial hypothesis-generating study was 

sloppily designed and inadequately performed. In addition, we had carried 

out, quite literally, thousands of comparisons involving hundreds of out-

comes and hundreds (if not thousands) of exposures. As a matter of proba-

bility theory, ‘statistically significant’ associations were bound to pop up and 

what we had described as a possibly causal association was really a chance 

finding.210

Yale epidemiologist Alvan Feinstein provided the first rigorous insight into epide-

miology’s multiple testing (MTMM) problem in two 1988 papers. Feinstein’s first paper 

counted published studies for and against 56 different research claims and found that 

there were roughly an equal number of studies supporting each particular claim as there 

were studies rejecting the claim.211 

Feinstein’s second paper argued that a close analysis of these studies revealed that 

the researchers did not begin their research with a defined, single question. Instead, they 

205	 Westfall (1993)
206	 Friedman (1959).
207	 Case (1985); Shekelle (1985a); Shekelle (1985b).
208	 Heinonen (1974).
209	 Curb (1982); Labarthe (1980).
210	 Shapiro (2004).
211	 Mayes (1988).
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allowed the data to define the question and then published the results.212 An enormous 

proportion of epidemiology research conclusions were the result of multiple testing and 

(in modern nomenclature) HARKing, hypothesizing after the result was known.

Statisticians have long been aware of the pitfalls of multiple testing: practitioners are 

keenly aware that error probabilities are not maintained when there is multiple testing 

of the same set of data.213 In the 1970s and 1980s, statisticians produced considerable liter-

ature on applied medical work that examined associations of blood types with disease.214 

In 1985, Westfall observed that the relevant research produced multiple confidence 

intervals, and that these intervals could be made just wide enough to provide a proper 

correction parameter for the body of multiple tests by the use of resampling techniques 

that preserved the overall family-wise error rate. This assesses the chance of producing a 

false positive result while making multiple statistical tests. In other words, researchers 

who used resampling techniques now had a practical way to assess the probability that 

multiple testing had produced false positive results.215 Simulation could solve the other-

wise intractable multiple testing problem.

Epidemiologists, unfortunately, instead decided as a body to disregard the multi-

ple-testing challenge identified by Feinstein. In 1990, the lead editorial in the very first 

issue of the new journal Epidemiology explicitly articulated this disregard in its title: “No 

Adjustments Are Needed for Multiple Comparisons.”216 The discipline, alas, generally has fol-

lowed this counsel. 

A book offering practical solutions to the multiple testing problem has been available 

since 1993217 and it has been cited more than 3500 times since;218 but very rarely is it used 

or cited in the major epidemiology journals.219 In 2000, Clyde did recognize that environ-

mental epidemiology needed to account for multiple modeling and proposed a Bayesian 

model average as a solution.220 The field also has paid limited attention to this alternate 

solution. Clyde (2000) has only been cited twice in the leading environmental epidemiol-

ogy journal Environmental Health Perspectives.221

Hayat et al. recently analyzed 216 randomly selected articles from a total of 1,023 

published in 2013 at seven influential public health journals (American Journal of Public 

Health, American Journal of Preventive Medicine, International Journal of Epidemiology, 

212	 Feinstein (1988b).
213	 Westfall (1993); Mayo (2018).
214	 E.g., Erikssen (1980); Garrison (1976).
215	 Westfall (1985).
216	 Rothman (1990).
217	 Westfall (1993).
218	 GS (2020a). 
219	 Genetic epidemiology researchers cite Westfall (1993) fairly frequently, but not epidemiologists in other subdisci-

plines. As of October 2020, Westfall (1993) has been cited twice in Environmental Health Perspectives, once in Amer-
ican Journal of Epidemiology, once in International Journal of Epidemiology, and never in Annals of Epidemiology or 
Epidemiology.

220	 Clyde (2000).
221	 GS (2020b). The two citing articles are Moolgavkar (2013); Roberts (2010).
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European Journal of Epidemiology, Epidemiology, American Journal of Epidemiology, and 

Bulletin of the World Health Organization). Only 5.1% of the 216 studies they reviewed re-

ported making statistical corrections for multiple testing.222 We speculate that the stud-

ies that performed these corrections were in the genetic epidemiology subdiscipline. As 

a whole, epidemiologists have not subjected their research to the severe test of Multiple 

Testing and Multiple Modeling. Their unwillingness to subject their research to this easy 

and basic test warrants significant skepticism of all the field’s results.

222	 Hayat (2017).
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Appendix 2: Statistical Significance

What is Statistical Significance?

The requirement that a research result be statistically significant has long been a 

convention of epidemiologic research.223 In hundreds of journals, in a wide vari-

ety of disciplines, you are much more likely to get published if you claim to have a 

statistically significant result. To understand the nature of the irreproducibility crisis, we 

must examine the nature of statistical significance. Researchers try to determine whether 

the relationships they study differ from what can be explained by chance alone by gath-

ering data and applying hypothesis tests, also called tests of statistical significance. 

In practice, the hypothesis that forms the basis of a test of statistical significance is 

rarely the researcher’s original hypothesis that a relationship between two variables 

exists. Instead, scientists almost always test the hypothesis that no relationship exists 

between the relevant variables. Statisticians call this the null hypothesis. As a basis for 

statistical tests, the null hypothesis is mathematically precise in a way that the original 

hypothesis typically is not. A test of statistical significance yields a mathematical esti-

mate of how well the data collected by the researcher supports the null hypothesis. This 

estimate is called a p-value.

It is traditional in the epidemiological disciplines to use confidence intervals instead 

of p-values from a hypothesis test to demonstrate statistical significance. As both confi-

dence intervals and p-values are constructed from the same data, they are interchange-

able, and one can be estimated from the other.224 Our use of p-values in this report implies 

they can be (and are) estimated from the confidence intervals used in nutritional epide-

miology studies.

223	 NASEM (1991)
224	 Altman (2011a); Altman (2011b).
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The Bell Curve and the P-Value: The Mathematical Background

All “classical” statistical methods rely on the Central Limit Theorem, proved by Pierre-Simon Laplace in 1810.

The theorem states that if a series of random trials are conducted, and if the results of the trials are independent and 
identically distributed, the resulting normalized distribution of actual results, when compared to the average, will 
approach an idealized bell-shaped curve as the number of trials increases without limit.

By the early twentieth century, as the industrial landscape came to be dominated by methods of mass production, the 
theorem found application in methods of industrial quality control. Specifically, the p-test naturally arose in connection 
with the question “how likely is it that a manufactured part will depart so much from specifications that it won’t fit well 
enough to be used in the final assemblage of parts?” The p-test, and similar statistics, became standard components 
of industrial quality control.

It is noteworthy that during the first century or so after the Central Limit Theorem had been proved by Laplace, its 
application was restricted to actual physical measurements of inanimate objects. While philosophical grounds for 
questioning the assumption of independent and identically distributed errors existed (i.e., we can never know for cer-
tain that two random variables are identically distributed), the assumption seemed plausible enough when discussing 
measurements of length, or temperatures, or barometric pressures.

Later in the twentieth century, to make their fields of inquiry appear more “scientific”, the Central Limit Theorem 
began to be applied to human data, even though nobody can possibly believe that any two human beings—the things 
now being measured—are truly independent and identical. The entire statistical basis of “observational social science” 
rests on shaky supports, because it assumes the truth of a theorem that cannot be proved applicable to the observa-
tions that social scientists make.

A p-value estimated from a confidence interval is a number between zero and one, 

representing a probability based on the assumption that the null hypothesis is actually 

true.225 A very low p-value means that, if the null hypothesis is true, the researcher’s data 

are rather extreme—surprising, because a researcher’s formal thesis when conducting a 

null hypothesis test is that there is no association or difference between two groups. It 

should be rare for data to be so incompatible with the null hypothesis. But perhaps the 

null hypothesis is not true, in which case the researcher’s data would not be so surpris-

ing. If nothing is wrong with the researcher’s procedures for data collection and analysis, 

then the smaller the p-value, the less likely it is that the null hypothesis is correct.

In other words: the smaller the p-value, the more reasonable it is to reject the null hy-

pothesis and conclude that the relationship originally hypothesized by the researcher does 

exist between the variables in question. Conversely, the higher the p-value, and the more 

typical the researcher’s data would be in a world where the null hypothesis is true, the 

less reasonable it is to reject the null hypothesis. Thus, the p-value provides a rough mea-

sure of the validity of the null hypothesis—and, by extension, of the researcher’s “real 

hypothesis” as well.226 Or it would, if a statistically significant p-value had not become the 

gold standard for scientific publication.227

225	 Given the assumption that the null hypothesis is actually true, the p-value indicates the frequency with which the 
researcher, if he repeated his experiment by collecting new data, would expect to obtain data less compatible with the 
null hypothesis than the data he actually found. A p-value of 0.20, for example, means that if the researcher repeated 
his research over and over in a world where the null hypothesis is true, only 20% of his results would be less compatible 
with the null hypothesis than the results he actually got. 

226	 NASEM (2019); Randall (2018).
227	 Briggs, Trafimow, and others reject the use of p-values for analyzing and interpreting data. Briggs (2016); Briggs 
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Why Does Statistical Significance Matter?

The government’s central role in science, both in funding scientific research and in us-

ing scientific research to justify regulation, further disseminated statistical significance 

throughout the academic world. Within a generation, statistical significance went from 

a useful shorthand that agricultural and industrial researchers used to judge whether to 

continue their current line of work, or switch to something new, to a prerequisite for reg-

ulation, government grants, tenure, and every other form of scientific prestige—and also, 

and crucially, the essential prerequisite for professional publication.

Scientists’ incentive to produce positive, original results became an incentive to pro-

duce statistically significant results. Groupthink, frequently enforced via peer review and 

editorial selection, inhibits publication of results that run counter to disciplinary or po-

litical presuppositions.228 Many more scientists use a variety of statistical practices, with 

more or less culpable carelessness, including:

•	 improper statistical methodology;

•	 consciously or unconsciously biased data manipulation that produces desired 

outcomes;

•	 choosing between multiple measures of a variable, selecting those that 

provide statistically significant results, and ignoring those that do not; and

•	 using illegitimate manipulations of research techniques.229

Still others run statistical analyses until they find a statistically significant result—

and publish the one (likely spurious) result. Far too many researchers report their meth-

ods unclearly, and let the uninformed reader assume they actually followed a rigorous 

scientific procedure.230 A remarkably large number of researchers admit informally to 

one or more of these practices—which collectively are informally called p-hacking.231 

Significant evidence suggests that p-hacking is pervasive in an extraordinary number of 

scientific disciplines.232 HARKing is the most insidious form of p-hacking.

(2019); Trafimow (2018); and see Berger (1987); Cohen (1994). They argue that null hypothesis significance testing, 
p-values and the like are irredeemably flawed and that they should never be used in any way. We do not dispute this 
argument—but neither do we use it in this particular critique. As risk ratios and confidence intervals are common 
statistical measures in nutritional epidemiology, our use of p-values is in any case as a complementary measure of 
confidence intervals for p-value plotting. McCormack (2013); Montgomery (2003). We do generally recommend that 
nutritional epidemiologists address the critique by Briggs, et al.

228	 Ritchie (2020); and see Joseph (2020).
229	 Randall (2018).
230	 Chambers (2017); Harris (2017); Hubbard (2015); Randall (2018); Ritchie (2020).
231	 Fanelli (2009); John (2012); Randall (2018); Ritchie (2020); Schwarzkopf (2014); Simonsohn (2014).
232	 Bruns (2016); Head (2015); but see Hartgerink (2017); Tanner (2015).
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Appendix 3: The Irreproducibility Crisis of Modern Science

The Catastrophic Failure of Scientific Replication

Let us briefly review the methods and procedures of science. The empirical scien-

tist conducts controlled experiments and keeps accurate, unbiased records of all 

observable conditions at the time the experiment is conducted. If a researcher has 

discovered a genuinely new or previously unobserved natural phenomenon, other re-

searchers—with access to his notes and some apparatus of their own devising—will be 

able to reproduce or confirm the discovery. If sufficient corroboration is forthcoming, the 

scientific community eventually acknowledges that the phenomenon is real and adapts 

existing theory to accommodate the new observations.

The validation of scientific truth requires replication or reproduction. Replicability 

(most applicable to the laboratory sciences) most commonly refers to obtaining an exper-

iment’s results in an independent study, by a different investigator with different data, 

while reproducibility (most applicable to the observational sciences) refers to different 

investigators using the same data, methods, and/or computer code to reach the same con-

clusion.233 We may further subdivide reproducibility into methods reproducibility, results 

reproducibility, and inferential reproducibility.234 Scientific knowledge only accrues as 

multiple independent investigators replicate and reproduce one another’s work.235

Yet today the scientific process of replication and reproduction has ceased to function 

properly. A vast proportion of the scientific claims in published literature have not been 

replicated or reproduced; credible estimates are that a majority of these claims cannot 

be replicated or reproduced—that they are in fact false.236 An extraordinary number of 

scientific and social-scientific disciplines no longer reliably produce true results—a state 

of affairs commonly referred to as the irreproducibility crisis (reproducibility crisis, replica-

tion crisis). A substantial majority of 1,500 active scientists recently surveyed by Nature 

called the current situation a crisis; 52% judged the situation a major crisis and another 

233	 NASEM (2016); NASEM (2019); Nosek (2020); Pellizzari (2017).
234	 Goodman (2016).
235	 We define reproducibility throughout our report as the testing and reproducing of an experiment’s underlying 

hypothesis using fresh data and/or a new method of analysis. Psychologists also conduct conceptual replications, 
“the attempt to test the same theoretical process as an existing study, but that uses methods that vary in some way 
from the previous study” (Crandall 2016). The biomedical literature, however, does not refer to conceptual replication 
(NASEM 2016), and we have not innovated by using it in this report. We note the general importance and usefulness of 
conceptual replication, however, and we recommend that professionals in other disciplines consider whether it can be 
adapted usefully for their own research procedures.

236	 Halsey (2015); Ioannidis (2005); Randall (2018).
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38% judged it “only” a minor crisis.237 The increasingly degraded ordinary procedures of 

modern science display the symptoms of catastrophic failure.238

The scientific world’s dysfunctional professional incentives bear much of the blame 

for this catastrophic failure.

The Scientific World’s Professional Incentives

Scientists generally think of themselves as pure truth-seekers who seek to follow a 

scientific ethos roughly corresponding to Merton’s norms of universalism, communality, 

disinterestedness, and organized skepticism.239 Public trust in scientists240 generally de-

rives from a belief that they adhere successfully to those norms. But this self-conception 

differs markedly from reality.

Knowingly or unknowingly, scientists respond to economic and reputational incen-

tives as they pursue their own self-interest.241 Buchanan and Tullock’s work on public 

choice theory provides a good general framework. Politicians and civil servants (bureau-

crats) act to maximize their self-interest rather than acting as disinterested servants of 

the public good. 242 This general insight applies specifically to scientists, peer reviewers, 

and government experts.243 The different participants in the scientific research system 

all serve their own interests as they follow the system’s incentives.

Well-published university researchers earn tenure, promotion, lateral moves to more 

prestigious universities, salary increases, grants, professional reputation, and public 

esteem—above all, from publishing exciting, new, positive results. The same incentives 

affect journal editors, who receive acclaim for their journal, and personal reputational 

awards, by publishing exciting new research—even if the research has not been vetted 

thoroughly.244 Grantors want to fund the same sort of exciting research—and government 

funders possess the added incentive that exciting research with positive results also 

supports the expansion of their organizational mission.245 American university adminis-

trations want to host grant-winning research, from which they profit by receiving “over-

head” costs—frequently a majority of overall research grant costs.246

237	 Baker (2016).
238	 Archer (2020); Chawla (2020); Coleman (2019); Engber (2017); Gobry (2016); Hennon (2019); Herold (2018); Ioannidis 

(2005); Manuel (2019); NASEM (2019); Randall (2018); Yong (2018); Young (2018); Zeeman (1976); Zimring (2019).
239	 Merton (1973); and see Anderson (2010); Kim (2018).
240	 Sample (2019).
241	 Buchanan (2004); Edwards (2017); Freese (2018); Glaeser (2006); and see Keller (2015); Shapin (1994).
242	 Buchanan (2004).
243	 Cecil (1985); Feinstein (1988b).
244	 Ritchie (2020).
245	 Martino (2017); Lilienfeld (2017).
246	 Cordes (1998); Kaiser (2017); Roche (1994).
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All these incentives reward published research with new positive claims—but not re-

producible research. Researchers, editors, grantors, bureaucrats, university administra-

tions—each has an incentive to seek out the exciting new research that draws money, 

status, and power, but few or no incentives to double check their work. Above all, they 

have little incentive to reproduce the research, to check that the exciting claim holds up—

because if it does not, they will lose money, status, and prestige. 

Each member of the scientific research system, seeking to serve his or her own in-

terest, engages in procedures guaranteed to inflate the production of exciting, but false 

research claims in peer-reviewed publications. Collectively, the scientific world’s pro-

fessional incentives do not sufficiently reward reproducible research. We can measure the 

overall effect of the scientific world’s professional incentives by analyzing publication bias.

Academic Incentives versus Industrial Incentives

Far too many academics and bureaucrats, and a distressingly large amount of the public, believe that university science 
is superior to industrial science. University science is believed to be disinterested; industrial science corrupted by the 
desire to make a profit. University science is believed to be accurate and reliable; industrial science is not.247

Our critique of the scientific world’s professional incentives is, above all, a critique of university science incentives. Ac-
cording to one study, zero out of fifty-two epidemiological claims in randomized trials could be replicated.248 Accord-
ing to another, only 36 of 100 of the most important psychology studies could be replicated.249 Nutritional research, a 
tissue of disproven claims such as coffee causes pancreatic cancer, has lost much of its public credibility.250 Academic 
science, both observational and experimental, possesses astonishingly high error rates—and peer and editorial review 
of university research no longer provides effective quality control.251

Industry research is subject to far more effective quality control. Government-imposed Good Laboratory Practice Stan-
dards, and their equivalents, apply to a broad range of industry research—and do not apply to university research.252 
Industry, moreover, is subject to the most effective quality control of all—a company’s products must work, or it will 
go out of business.253 Both the profit incentive and government regulation tend to make industrial science reliable; 
neither operates upon academic science.

Publication Bias: How Published Research Skews 
Toward False Positive Results

The scientific world’s incentives for exciting research rather than reproducible re-

search drastically affects which research scientists submit for publication. Scientists 

who try to build their careers on checking old findings or publishing negative results are 

247	 E.g., Oreskes (2010).
248	 Young (2011).
249	 Open Science Collaboration (2015)
250	 Bidel (2013); Chambers (2017); Harris (2017); Hubbard (2015); MacMahon (1981).
251	 Feinstein (1988b); Ogden (2011); Schachtman (2011); Schroter (2008); Smith (2010).
252	 E.g., EPA (n.d.).
253	 Taleb (2018).
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unlikely to achieve professional success. The result is that scientists simply do not sub-

mit negative results for publication. Some negative results go to the file drawer. Others 

somehow turn into positive results as researchers, consciously or unconsciously, mas-

sage their data and their analyses. Neither do they perform or publish many replication 

studies, since the scientific world’s incentives do not reward those activities either.254

We can measure this effect by anecdote. One co-author recently attended a confer-

ence where a young scientist stood up and said she spent six months trying unsuccessful-

ly to replicate a literature claim. Her mentor said to move on—and that failed replication 

never entered the scientific literature. Individual papers also recount problems, such as 

difficulties encountered when correcting errors in peer-reviewed literature.255 We can 

quantify this skew by measuring publication bias—the skew in published research toward 

positive results compared with results present in the unpublished literature.256 

A body of scientific literature ought to have a large number of negative results, or re-

sults with mixed and inconclusive results. When we examine a given body of literature 

and find an overwhelmingly large number of positive results, especially when we check it 

against the unpublished literature and find a larger number of negative results, we have 

evidence that the discipline’s professional literature is skewed to magnify positive ef-

fects, or even create them out of whole cloth.257

As far back as 1987, a study of the medical literature on clinical trials showed a publi-

cation bias toward positive results: “Of the 178 completed unpublished randomized con-

trolled trials (RCTs) with a trend specified, 26 (14%) favored the new therapy compared 

to 423 of 767 (55%) published reports.”258 Later studies provide further evidence that the 

phenomenon affects an extraordinarily wide range of fields, including: 

1.	 the social sciences generally, where “strong results are 40 percentage points 

more likely to be published than are null results and 60 percentage points 

more likely to be written up;”259

2.	 climate science, where “a survey of Science and Nature demonstrates that the 

likelihood that recent literature is not biased in a positive or negative direc-

tion is less than one in 5.2 × 10−16;”260

3.	 psychology, where “the negative correlation between effect size and samples 

size, and the biased distribution of p values indicate pervasive publication 

bias in the entire field of psychology;”261 

254	 Randall (2018); Ritchie (2020).
255	 Allison (2016).
256	 Olson (2002); Nissen (2016); Randall (2018).
257	 Chambers (2017); Harris (2017); Hubbard (2015); Ritchie (2020).
258	 Dickersin (1987).
259	 Franco (2014).
260	 Michaels (2008).
261	 Kühberger (2014).
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4.	 sociology, where “the hypothesis of no publication bias can be rejected at 

approximately the 1 in 10 million level;”262 

5.	 research on drug education, where “publication bias was identified in rela-

tion to a series of drug education reviews which have been very influential on 

subsequent research, policy and practice;”263 and

6.	 research on “mindfulness-based mental health interventions,” where “108 

(87%) of 124 published trials reported ≥1 positive outcome in the abstract, and 

109 (88%) concluded that mindfulness-based therapy was effective, 1.6 times 

greater than the expected number of positive trials based on effect size.”264 

What publication bias especially leads to is a skew in favor of research that errone-

ously claims to have discovered a statistically significant relationship in its data.

262	 Gerber (2008).
263	 McCambridge (2007).
264	 Coronado-Montoya (2016).
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Appendix 4: P-Value Plotting: A Severe Test for Publication Bias, 
P-hacking, and HARKing

Introduction

We use p-value plotting to test whether a field could be affected by the irrepro-

ducibility crisis—by publication bias, p-hacking, and HARKing. In essence, 

we analyze meta-analyses of research and output their results on a simple 

plot that displays the distribution of p-value results:

•	 A literature unaffected by publication bias, p-hacking or HARKing should 

display its results as a single line.

•	 A literature which has been affected by publication bias, p-hacking or 

HARKing should display bilinearity—results visible as two, separated lines.

P-value plotting of meta-analyses results allows a reader, at a glance, to determine 

whether there is circumstantial evidence that a body of scientific literature has been af-

fected by the irreproducibility crisis.

We will summarize here the statistical components of p-value plotting. We will begin 

by outlining a few basic elements of statistical methodology: counting; the definition and 

nature of p-values; and a simple p-value plotting method, which makes it relatively sim-

ple to evaluate a collection of p-values. We will then explain what meta-analyses are, and 

how they are used to inform government regulation. We will then explain how precisely 

p-value plotting of meta-analyses works, and what it reveals about the scientific litera-

ture it tests.

Counting

Counting can be used to identify which research papers in literature may suffer from 

the various biases described above. We should want to know how many “questions” are 

under consideration in a research paper. In a typical nutritional epidemiology paper, for 

example, there are usually several health outcomes at issue, such as all-cause deaths, 

cardiovascular endpoints (e.g., heart attacks, stroke), diabetes, and various cancers (e.g., 

breast, colorectal, gallbladder, and liver). Researchers consider whether a risk factor, 

such as individual food frequencies, predicts any of these health outcomes—that is to say, 

whether they are “positively” associated with a particular health outcome. When they 
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study foods, epidemiologists may analyze categories including individual food frequen-

cies, food groups, nutrient indexes, and food-group-specific nutrient indexes.

Each of these risk factors is a predictor, each type of health effect is an outcome. 

Scientists may further analyze an association between a particular food component and 

a particular health outcome with reference to categories of analysis such as age and sex. 

Researchers call these further yes/no categories of analysis covariates; covariates may 

affect the strength of the association, but they are not the direct objects of study.

An epidemiology paper considers a number of questions equal to the product of the 

number of predictors (P) times the number of outcomes (O) times 2 to the power of the 

number of yes/no covariates (C). In other words:

the number of questions = P x O x 2C

This formula approximates the number of statistical tests an epidemiology study 

performs. The larger the number of statistical tests, the easier it is to find a statistically 

significant association due solely to chance.

P-values

As we have summarized above, a null hypothesis significance test is a method of sta-

tistical inference in which a researcher tests a factor (or predictor) against a hypothesis 

of no association with an outcome. The researcher uses an appropriate statistical test 

to attempt to disprove the null hypothesis. The researcher then converts the result to a 

p-value. The p-value is a value between 0 and 1 and it is a numerical measure of signifi-

cance. The smaller the p-value, the more significant the result. Significance is the tech-

nical term for surprise. When we are conducting a null hypothesis significance test, we 

should expect no relationship between any particular predictor and any particular out-

come. Any association, any departure from the null hypothesis (random chance), should 

and does surprise us.

If the p-value is small—conventionally in many disciplines, less than 0.05—then 

the researcher may reject the null hypothesis and conclude the result is surprising and 

that there is indeed evidence for a significant relationship between a predictor and an 

outcome. If the p-value is large—conventionally, greater than 0.05—then the researcher 

should accept the null hypothesis and conclude there is nothing surprising and that there 

is no evidence for a significant relationship between a predictor and an outcome. 
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But strong evidence is not dispositive (absolute) evidence. By definition, where p = 0.05, 

a null hypothesis that is true will be rejected, by chance, 5% of the time. When this hap-

pens, it is called a false positive—false positive evidence for the research hypothesis (false 

evidence against the null hypothesis). The size of the experiment does not matter. When 

researchers compute a single p-value, both large and small studies have a 5% chance of 

producing a false positive result.

Such studies, by definition, can also produce false negatives—false negative evidence 

against the research hypothesis (false evidence for the null hypothesis). In a world of pure 

science, false positives and false negatives would have equally negative effects on pub-

lished research. But all the incentives in our summary of the Irreproducibility Crisis in-

dicate that scientists vastly overproduce false positive results. We will focus here, there-

fore, on false positives—which far outnumber false negatives in the published scientific 

literature.265

We will focus particularly on how and why conducting a large number of statistical 

tests produces many false positives by chance alone.

Simulating Random p-values

We can illustrate how a large number of statistical tests produce false positives by 

chance alone by means of a simulated experiment. We can use a computer to generate 100 

pseudo-random numbers between 0 and 1 that mimic p-values and enter them into a 5 x 

20 table. (See Figure 13.) These randomly generated p-values should be evenly distribut-

ed, with approximately 5 results between 0 and 0.05, 5 between 0.05 and 0.10, and so on—

approximately, because a randomly generated sequence of numbers should not produce a 

perfectly uniform distribution. 

In Figure 13, we have simulated a nutritional epidemiology study using a hypotheti-

cal single cohort data set analyzing associations between 5 individual foods and 20 health 

outcomes. Remember, these numbers were picked at random. 

265	 Ioannidis (2011).
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Figure 13: 100 Simulated p-values

Outcomes Food 1 Food 2 Food 3 Food 4 Food 5

O 01 0.899 0.417 0.673 0.754 0.686

O 02 0.299 0.349 0.944 0.405 0.878

O 03 0.868 0.535 0.448 0.430 0.221

O 04 0.439 0.897 0.930 0.500 0.257

O 05 0.429 0.082 0.038 0.478 0.053

O 06 0.432 0.305 0.056 0.403 0.821

O 07 0.982 0.707 0.460 0.789 0.956

O 08 0.723 0.931 0.827 0.296 0.758

O 09 0.174 0.982 0.277 0.970 0.366

O 10 0.117 0.339 0.281 0.746 0.419

O 11 0.433 0.640 0.313 0.310 0.482

O 12 0.004 0.412 0.428 0.195 0.184

O 13 0.663 0.552 0.893 0.084 0.827

O 14 0.785 0.398 0.895 0.393 0.092

O 15 0.595 0.322 0.159 0.407 0.663

O 16 0.553 0.173 0.452 0.859 0.899

O 17 0.748 0.480 0.486 0.018 0.130

O 18 0.643 0.371 0.303 0.614 0.149

O 19 0.878 0.548 0.039 0.864 0.152

O 20 0.559 0.343 0.187 0.109 0.930

Each box in Figure 13 represents a different statistical test applied to associate a pre-

dictor (a food component) with an outcome (a health consequence). The Figure displays 

results of 100 null hypothesis tests analyzing whether each of the five different food compo-

nents are positively associated with 20 different outcomes. Each box represents one out of 100 

null hypothesis statistical tests—1 test for each of 20 health outcomes, applied to 5 differ-

ent food components. The number in the box represents the p-value of each individual 

statistical test. 

This simulation contains four p-values that are less than 0.05: 0.004, 0.038, 0.039 

and 0.018. In other words, by sheer chance alone, a researcher could write and publish 

four professional articles based on the four “significant” results (p-values less than 0.05). 

Researchers are supposed to take account of these pitfalls (chance outcomes). There are 

standard procedures that can be used to prevent researchers from simply cherry-picking 
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“significant” results.266 But it is all too easy for a researcher to set aside those standard 

procedures, to p-hack, and just report on and write a paper for each result with a nomi-

nally significant p-value.

P-hacking by Asking Multiple Questions

As noted above, a standard form of p-hacking is for a researcher to run statistical 

analyses until a statistically significant result appears—and publish the one (likely spu-

rious) result. When researchers ask hundreds of questions, when they are free to use any 

number of statistical models to analyze associations, it is all too easy to engage in this 

form of p-hacking. In general, research based on multiple analyses of large complex data 

sets is especially susceptible to p-hacking, since a researcher can easily produce a p-value 

< 0.05 by chance alone.267 Research that relies on combining large numbers of questions 

and computing multiple models is known as Multiple Testing and Multiple Modeling.268

Confirmation bias compounds the difficulties of observing a chance p-value < 0.05. 

Confirmation bias, frequently triggered by HARKing that falsely conflates exploratory 

research with confirmatory research, influences researchers so that they are more likely 

to publish research that confirms a dominant scientific paradigm, such as the association 

of an air component with a health outcome, and less likely to publish results that contra-

dict a dominant scientific paradigm. 

P-value Plots

Now we put together several concepts that we have introduced. When we conduct a 

null hypothesis statistical test, we can produce a single p-value that can fall anywhere 

in the interval from 0 to 1, and which is considered “statistically significant” in many 

disciplines when it is less than 0.05. We also know that researchers often look at many 

questions and compute many models using the same observational data set, and that this 

allows them to claim that a small p-value produced by chance substantiates a claim to a 

significant association.

Consider the following example.269 Researchers made a claim that by eating breakfast 

cereal a woman is more likely to have a boy baby.270 The researchers conducted a food 

266	 Westfall (1993).
267	 Chambers (2017); Glaeser (2006); Harris (2017); Hubbard (2015); Ritchie (2020); Westfall (1993).
268	 Westfall (1993).
269	 Young (2009).
270	 Mathews (2008).
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frequency questionnaire (FFQ) study that asked pregnant women about their consump-

tion of 131 foods at two different time points, one before conception and one just after the 

estimated date of conception. The FFQ posed a total of 262 questions. The researchers 

obtained a result with a p-value less than 0.05 and claimed they had discovered an asso-

ciation between maternal breakfast cereal consumption and fetal sex ratios. Their pro-

cedure made it highly likely that they had simply discovered a false positive association.

We cannot prove that any one such result is a false positive, absent a series of repli-

cation experiments. But we can detect when a given result is likely to be a false positive, 

drawn from a larger body of questions that indicate randomness rather than a true posi-

tive association. 

The way to assess a given result is to make a p-value plot of the larger body of results 

that includes the individual result, and then plot the reported p-values of each of those 

results. We then use this p-value plot to examine how uniformly the p-values are spread 

over the interval 0 to 1. We use the following steps to create the p-value plot.

•	 Rank-order the p-values from smallest to largest.

•	 Plot the p-values against the integers: 1, 2, 3, …

When we have created the p-value plot, we interpret it like this:

•	 A p-value plot that forms approximately a 45-degree line (i.e., slope = 1) 

provides evidence of randomness—a literature that supports the null hypoth-

esis of no significant association.

•	 A p-value plot that forms approximately a line with a flat/shallow slope < 1, 

where most of the p-values are small (less than 0.05), provides evidence for a 

real effect—a literature that supports a statistically significant association. 

•	 A p-value plot that exhibits bilinearity—that divides into two lines—provides 

evidence of publication bias, p-hacking, and/or HARKing.271

Why does a plotted 45-degree line of p-value results provide evidence of randomness? 

When a researcher conducts a series of statistical tests to test a hypothesis, and there is 

no significant association, the individual results ought to appear anywhere in the interval 

0 to 1. When we rank these p-values and plot them against the integers 1, 2, … , they will 

produce a 45-degree line that depicts a uniform distribution of results. The differences be-

tween the individual results, in other words, differ from one another regularly, and pro-

duce collectively a uniform distribution of results. 

Whenever we plot a body of linked p-value results, and the results plot to a 45-degree 

line, that is evidence that an individual result is the result of a random distribution of re-

sults—that even a putatively significant association is really only a fluke result, a false 

271	 Young (2019a); Young (2019b); Young (2019c).
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positive, where the evidence as a whole supports the null hypothesis of no significant 

association.

We may take this as evidence of randomness whether we apply it to:

•	 a series of individual studies focused on one question,

•	 a series of tests that emerge by uncontrolled testing of a set of different predic-

tors and different outcomes, or

•	 a series of meta-analyses.272

The null hypothesis assumption is that there is no significant association. This pre-

sumption of a random outcome, of no significant association, must be positively defeated 

in a hypothesis test in order to make a claim of a significant, surprising result.273 The cor-

ollary is that an individual result of a significant association can only be taken as reliable 

if any body of results to which it belongs also positively defeats the p-value plot of a 45-de-

gree line that depicts a uniform distribution of results.274

Let us return to the research linking breakfast cereal with increased conception of 

baby boys. That statistical association was drawn from 262 total questions, each of which 

produced its own p-value. When we plot the reported p-values of all 262 of those ques-

tions, in Figure 14 below, the result is a line of slope 1 (approximately).

Figure 14: P-value Plot, 262 P-values, Drawn from Food Frequency Questionnaire, Ques-
tions Concerning Boy Baby Conception275

272	 Schweder and Spjøtvoll applied p-value plotting to evaluate many different questions. Schweder (1982). We apply 
p-value plotting to evaluate meta-analyses devoted to a single question; we believe our application of p-value plotting 
is original.

273	 Fisher (1925); Fisher (1935); Mayo (2018).
274	 An individual p-value that is extraordinarily small ( = far below 0.05), after adjustment for multiple testing, also has 

potential evidentiary value—but this occurs rarely in well-designed and executed nutritional epidemiology studies 
that control properly for bias and MTMM.

275	 Young (2009). We acquired the data from the original researchers, who to our knowledge have not yet made it public. 
Interested scholars who wish to reproduce our analysis should contact the original researchers.
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This line supports the presumption of randomness as a 45-degree line starting at the 

origin 0,0 would fit the data very well. The small p-value, less than 0.05, registered for the 

association between breakfast cereal consumption and boy-baby conception, represents 

a false positive finding. 

P-value plotting likewise reveals randomness, no significant association, when ap-

plied in Figure 15 to a meta-analysis that combined data from 69 questions drawn from 

40 observational studies. The claim being evaluated in the meta-analysis was whether 

long-term exercise training of elderly is positively associated with greater mortality and morbidi-

ty (increased accidents and falls and hospitalization due to accidents and falls). 

Figure 15: P-value Plot, 69 Questions Drawn From 40 Observational Studies, Meta-analy-
sis of Observational Data Sets Analyzing Association Between Elderly Long-term Exercise 

Training and Mortality and Morbidity Risk276

Figure 15, as Figure 14, plots the p-values as a sloped line from left to right at approx-

imately 45-degrees, and therefore supports the presumption of randomness. Note that 

Figure 15 contains four p-values less than 0.05, as well as several p-values close to 1.000. 

The p-values below p = 0.05 are most likely false positives. 

These claims are purely statistical. Researchers can, and will, argue that disci-

pline-specific information justifies treating their particular claim for a statistical 

276	 De Souto Barreto (2019).
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association—that “relevant biological knowledge,” for example, supports the claim 

that there truly is an association between breakfast cereal consumption and boy-baby 

conception.277 

We recognize the possibility that cases exist where statisticians and disciplinary 

specialists talk past one another and refuse to engage with the substance of one another’s 

arguments. But we urge disciplinary specialists, and the public at large, to consider how 

extraordinarily unlikely it is for a p-value plot indicating randomness to itself be a false 

positive. The counter-argument that a particular result truly registers a significant asso-

ciation needs to refute the chances against such a 45 degree line appearing if the individ-

ual results were not the consequence of selecting false positives for publication. 

Such a counter-argument should also consider that p-value plotting does register true 

effects. We applied the same method to produce a p-value plot in Figure 16 of studies that 

examined a smoking-lung cancer association. 

Figure 16: P-value Plot, 102 Studies, Association of Smoking and Squamous Cell Carcino-
ma of the Lungs278

In this case, the p-value plot did not form a roughly 45-degree line, with uniform 

p-value distribution over the interval. Instead it formed an almost horizontal line, with 

the vast majority of the results well below p = 0.01. Only 3 out of 102 p-values were above 

p = 0.05. One outlying p-value was just below 0.40—which reminds us that even where 

277	 Mathews (2009).
278	 Lee (2012).



104 Shifting Sands: Report #2

there is a true strong relationship, a few studies may produce false negatives. Our p-value 

plot provides evidence that the studies associating smoking and lung cancer had discov-

ered a true association. 

Bilinear P-value Plots

Our method also registers bilinear results (divides into two lines). In Figure 17, we 

plotted studies that analyze associations between fine particulate matter and the risk of 

preterm birth or term low birth weight. A 45-degree line as in Figures 14 and 15 indicates 

randomness, no effect, and therefore strongly suggests that researchers have indulged in 

HARKing if they claim a positive effect. A bilinear shape instead suggests the possibility 

of publication bias, p-hacking, and/or HARKing—although there remains some possibili-

ty of a true effect. Again, the p-value plot is not definitive; it is suggestive.

Figure 17: P-value Plot, 23 Studies, Association of Fine Particulate Matter (PM2.5) and 
the Risk of Preterm Birth or Term Low Birth Weight279

As we shall explain, such a bilinear plot should usually be interpreted as providing 

evidence that bias described above has affected a given field, albeit not as strong as the 

evidence that a 45-degree line provides evidence of no effect. Still, researchers would 

279	 Li (2017).
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have good cause to query a claim of an association between fine particulate matter and 

the risk of preterm birth or term low birth weight, even if a true effect cannot be abso-

lutely ruled out.

Figure 16 demonstrates that our method can detect true associations—it will not 

come back with a 45-degree line no matter what data you feed into it. When it does detect 

randomness, as in Figures 14 and 15, the inference is that a particular result is likely to 

be random, and that the claimed result has failed a statistical test that a true positive body 

of research passes. 

When a p-value plot exhibits bilinearity, as in Figure 17, that provides evidence that 

there are 1) missing p-values—missing results, which ought to complete the (null) line; 

and/or 2) p-hacked results, which have driven results down from what they should be 

to results smaller than the professionally designated level of statistical significance. 

Bilinearity, in other words, provides evidence that a field has been subject to publication 

bias—either that negative results have gone into the file drawer or that published results 

are the result of p-hacking, and/or HARKing.

Our test is useful for assessing the scientific literature precisely because it provides 

reasonable possibilities for both success and failure.280 We should emphasize that this 

method is not meant to present an unanswerable disproof of any study or literature to 

which it is applied. As noted above, the authors of the claim associating maternal break-

fast cereal consumption with altered fetal sex ratios made a counter-argument to our cri-

tique, and to the argument for randomness displayed in Figure 14. We urge all scholars 

and interested citizens to examine these counter-arguments. Scientific discovery pro-

ceeds by the scrutiny of such arguments and counter-arguments.281

We claim that our p-value plot method provides a useful test to check claims against 

the null-hypothesis. Any such claims ought as a general rule to survive the test of our 

method—particularly if they are to be used to influence government policy. 

P-value plots are an essential component of the rigorous statistical testing that must 

now be considered the scientific gold standard. Even meta-analyses exclusively relying 

on studies of RCTs, which use admirably rigorous study designs,282 can display bilinear 

p-value plots. P-value plotting provides evidence that while RCT studies may be necessary 

to produce rigorous science, they are not sufficient unless they have been subjected to 

equally rigorous statistical testing.

Where government regulatory policy depends on the claim that such positive asso-

ciations exist, the existence of a bilinear p-value plot provides a very strong argument that a 

body of literature has not actually proved the existence of an association to the level that justifies 

280	 Mayo (2018).
281	 Mathews (2009).
282	 Grossman (2005).
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government regulation. A bilinear p-value plot provides a good rule of thumb: a government 

agency has not yet acquired the rigorously tested body of scientific research needed to 

justify regulation.

P-value plotting isn’t itself a cure-all. The procedure might not be able to tell when 

an entire literature consists of biased results. P-value plotting cannot detect every form of 

systematic error. But it is a useful tool, which allows us to detect a strong likelihood that a 

substantial portion of government regulation has been built on inconsistent science.

We note here that p-value plotting is not the only means available by which to de-

tect publication bias, p-hacking, and HARKing in meta-analyses. Scientists have come up 

with a broad variety of statistical tests to account for such frailties in base studies as they 

compute meta-analyses. Unfortunately, publication bias and questionable research pro-

cedures in base studies severely degrade the utility of existing means of detection.283 We 

proffer p-value plotting not as the first means to detect publication bias and p-hacking 

in meta-analyses, but as a better means than alternatives which have proven ineffective.

283	 Carter (2019).
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Appendix 5: Meta-Analyses: Definition and Use

A meta-analysis is a systematic procedure for statistically combining data from 

multiple published papers that address a common research question—for ex-

ample, whether a specific factor is a likely cause or origin of a health outcome 

such as a stroke or a heart attack. Scientists can conduct meta-analyses relatively easi-

ly. Researchers use computer programs to search the published literature, sort quickly 

through titles, abstracts, and full-texts of papers, and select ca. 10−20 papers from the 

hundreds to thousands of papers initially identified as candidates for meta-analysis. 

The set of papers chosen for a single meta-analysis itself requires careful study so as 

to select properly comparable and on-topic papers and include all the relevant studies.284 

In the well-established cottage industry of meta-analysis studies, a skilled team of 5−15 

researchers can turn out one meta-analysis per week.285 Researchers publish approxi-

mately 5,000 meta-analysis studies per year.286

Many government agencies now depend upon meta-analyses. The flood of papers on 

any given topic makes it difficult even for an expert to stay abreast of all the literature, 

and a meta-analysis provides a convenient way to digest the results of many individual pa-

pers. Government agencies also wish to base their policy on a broad spectrum of rigorous, 

comparable research, rather than just one or a few individual studies. Meta-analyses of-

fer the promise that government agencies are indeed using such research. Meta-analyses 

also offer what appears to be an impartial protocol that can provide a safeguard against 

the danger of biased expert judgment.

Yet meta-analyses are not a cure-all. Meta-analyses can themselves be affected by 

publication bias, and by almost every other form of irreproducibility-crisis research 

error that affects individual studies.287 For example, when researchers vary meta-anal-

yses’ inclusion and exclusion criteria—the criteria stating which studies to include in a 

meta-analysis and which to exclude—they can produce wildly varying results.288 In oth-

er words, researchers who do not pre-register their inclusion and exclusion criteria can 

HARK their meta-analyses. 

Meta-analyses’ reliability also depends on their base studies’ reliability—and if those 

have been affected by publication bias or other infirmities (e.g., failure to apply MTMM 

to control for experiment-wise error), then the meta-analyses they are conducting are 

no more than Garbage In, Garbage Out (GIGO). Funding bias can affect meta-analyses—

and where government agencies are concerned, it is worth emphasizing that government 

funding can produce substantial funding bias.289

284	 Chen (2013); Glass (1976); Stroup (2000).
285	 De Vrieze (2018).
286	 Ioannidis (2016).
287	 Rothstein (2005); Thornton (2000).
288	 Palpacuer (2019).
289	 Cecil (1985); Wojick (2015).
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Evaluation

Qualitative study of meta-analyses is a burgeoning field, which should repay further 

development.290 We will focus here, however, on the quantitative, statistical study of me-

ta-analyses’ validity—an approach made possible by the extraordinary growth in the 

number of meta-analyses. 

When we refer to a research ‘claim’ in our discussion below, we mean that a study 

makes a claim of a positive association between a factor investigated and an outcome 

based on finding small p-values (less than 0.05) in their research. As it is a statistical 

claim being made by the meta-analysis researchers, we can evaluate the reliability of the 

claim from a statistical point-of-view. We can use p-value plotting to evaluate published 

meta-analyses, as we did in Figures 14-17, and thereby uncover problems in the way these 

meta-analyses have been interpreted. 

When we plot an approximately 45-degree line, we acquire good evidence for the null 

hypothesis. When we plot bilinearity, we acquire evidence of publication bias, p-hacking, 

and/or HARKing—and significant evidence against any claim of a consistent overall pos-

itive association between cause and outcome across the studies used in that particular 

meta-analysis. At the very least, we have acquired evidence that some unidentified co-

variate complicates the putative relationship.291

We noted above that government agencies rely heavily on meta-analyses to justify 

regulation. They do not as yet subject these meta-analyses to p-value plotting—and we 

believe that their failure to do so denies them a very useful tool for assessing the validity 

of such meta-analyses. P-value plotting that establishes bilinearity does not disprove the 

meta-analysis. The significant associations could be true; the random results in error. But 

given the known incentives toward publication bias, p-hacking, and HARKing, bilineari-

ty says we should take meta-analyses’ claims to have detected positive associations with 

a big grain of salt.

290	 Lorenc (2016).
291	 Young (2019a).
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Appendix 6: HARKing: Exploratory Research 
Disguised as Confirmatory Research

To HARK is to hypothesize after the results are known—to look at the data first and 

then come up with a hypothesis that provides a statistically significant result.292 

Irreproducible research hypotheses produced by HARKing send whole disci-

plines chasing down rabbit holes, as scientists interpret their follow-up research to con-

form to a highly tentative piece of exploratory research that was pretending to be confirma-

tory research.

Scientific advance depends upon scientists maintaining a distinction between ex-

ploratory research and confirmatory research, precisely to avoid this mental trap. These 

two types of research should utilize entirely different procedures. HARKing conflates 

the two by pretending that a piece of exploratory research has really followed the proce-

dures of confirmatory research.293

Jaeger and Halliday provide a useful brief definition of exploratory and confirmatory 

research, and how they differ from one another:

Explicit hypotheses tested with confirmatory research usually do not spring 

from an intellectual void but instead are often gained through exploratory 

research. Thus exploratory approaches to research can be used to generate 

hypotheses that later can be tested with confirmatory approaches. ... The 

end goal of exploratory research ... is to gain new insights, from which new 

hypotheses might be developed. ... Confirmatory research proceeds from a 

series of alternative, a priori hypotheses concerning some topic of interest, 

followed by the development of a research design (often experimental) to 

test those hypotheses, the gathering of data, analyses of the data, and ending 

with the researcher’s inductive inferences. Because most research programs 

must rely on inductive (rather than deductive) logic..., none of the alternative 

hypotheses can be proven to be true; the hypotheses can only be refuted or 

not refuted. Failing to refute one or more of the alternative hypotheses leads 

the researcher, then, to gain some measure of confidence in the validity of 

those hypotheses.294

Exploratory research, in other words, has few predefined hypotheses. Researchers do 

not at first know what precisely they’re looking for, or even necessarily where to look for 

292	 Randall (2018); Ritchie (2020).
293	 Ritchie (2020).
294	 Jaeger (1998).
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it. They “typically generate hypotheses post hoc rather than test a predefined hypothe-

sis.”295 Exploratory studies can easily raise thousands of separate scientific claims296 and 

they possess an increased risk of finding false positive associations.

Confirmatory research “tests predefined hypotheses usually derived from a theory or 

the results of previous studies that can be used to draw firm and often meaningful con-

clusions.”297 Confirmatory studies ideally should focus on just one hypothesis, to provide 

a severe test of its validity. In good confirmatory research, researchers control every sig-

nificant variable.

When multiple questions are at issue, researchers should use procedures such as 

Multiple Testing and Multiple Modeling (MTMM) to control for experiment-wise error—the 

probability that at least one individual claim will register a false positive when research-

ers conduct multiple statistical tests.298

Researchers should state the hypothesis clearly, draft the research protocol careful-

ly, and leave as little room for error as possible in execution or interpretation. Properly 

conducted, confirmatory research is by its nature far less likely to find false positive as-

sociations than original research, and conclusions supported by confirmatory research 

are correspondingly more reliable.

Researchers resort to HARKing—exploratory research that mimics confirmatory re-

search—not only because it can increase their publication rate but also because it can in-

crease their prestige. HARKing scientists can gain the reputation for an overwhelmingly 

probable research result when all they have really done is set the stage for more follow-on 

false positive results or file-drawer negative results.

Another way to define HARKing is that, like p-hacking more generally, it overfits 

data—it produces a model that conforms to random data.299 

HARKing, unfortunately, includes yet wider categories of research. When scientists 

preregister their research, they specify and publish their research plan in advance. All 

un-preregistered research can be susceptible to HARKing, as it allows researchers to 

transform their exploratory research into confirmatory research by looking at their data 

first and then constructing a hypothesis to fit the data, without informing peer reviewers that 

this is what they did.300 In general, researchers too frequently fail to make clear distinc-

tions between exploratory and confirmatory research, or to signal transparently to their 

readers the nature of their own research.301

295	 Bandholm (2017).
296	 Young (2011); Young (2017).
297	 Bandholm (2017).
298	 Westfall (1993)
299	 Ritchie (2020).
300	 Wagenmakers (2012).
301	 Nilsen (2020).
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